mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-02 22:37:24 +00:00
i Update initialization.py initialization initialization Update initialization.py i i Update sd_samplers_common.py Update sd_hijack.py i Update sd_models.py Update sd_models.py Update forge_loader.py Update sd_models.py i Update sd_model.py i Update sd_models.py Create sd_model.py i i Update sd_models.py i Update sd_models.py Update sd_models.py i i Update sd_samplers_common.py i Update sd_models.py Update sd_models.py Update sd_samplers_common.py Update sd_models.py Update sd_models.py Update sd_models.py Update sd_models.py Update sd_samplers_common.py i Update shared_options.py Update prompt_parser.py Update sd_hijack_unet.py i Update sd_models.py Update sd_models.py Update sd_models.py Update devices.py i Update sd_vae.py Update sd_models.py Update processing.py Update ui_settings.py Update sd_models_xl.py i i Update sd_samplers_kdiffusion.py Update sd_samplers_timesteps.py Update ui_settings.py Update cmd_args.py Update cmd_args.py Update initialization.py Update shared_options.py Update initialization.py Update shared_options.py i Update cmd_args.py Update initialization.py Update initialization.py Update initialization.py Update cmd_args.py Update cmd_args.py Update sd_hijack.py
234 lines
6.4 KiB
Python
234 lines
6.4 KiB
Python
import sys
|
|
import contextlib
|
|
from functools import lru_cache
|
|
|
|
import torch
|
|
from modules import errors, shared
|
|
from modules import torch_utils
|
|
|
|
if sys.platform == "darwin":
|
|
from modules import mac_specific
|
|
|
|
if shared.cmd_opts.use_ipex:
|
|
from modules import xpu_specific
|
|
|
|
|
|
def has_xpu() -> bool:
|
|
return shared.cmd_opts.use_ipex and xpu_specific.has_xpu
|
|
|
|
|
|
def has_mps() -> bool:
|
|
if sys.platform != "darwin":
|
|
return False
|
|
else:
|
|
return mac_specific.has_mps
|
|
|
|
|
|
def cuda_no_autocast(device_id=None) -> bool:
|
|
if device_id is None:
|
|
device_id = get_cuda_device_id()
|
|
return (
|
|
torch.cuda.get_device_capability(device_id) == (7, 5)
|
|
and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16")
|
|
)
|
|
|
|
|
|
def get_cuda_device_id():
|
|
return (
|
|
int(shared.cmd_opts.device_id)
|
|
if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
|
|
else 0
|
|
) or torch.cuda.current_device()
|
|
|
|
|
|
def get_cuda_device_string():
|
|
if shared.cmd_opts.device_id is not None:
|
|
return f"cuda:{shared.cmd_opts.device_id}"
|
|
|
|
return "cuda"
|
|
|
|
|
|
def get_optimal_device_name():
|
|
if torch.cuda.is_available():
|
|
return get_cuda_device_string()
|
|
|
|
if has_mps():
|
|
return "mps"
|
|
|
|
if has_xpu():
|
|
return xpu_specific.get_xpu_device_string()
|
|
|
|
return "cpu"
|
|
|
|
|
|
def get_optimal_device():
|
|
return torch.device(get_optimal_device_name())
|
|
|
|
|
|
def get_device_for(task):
|
|
if task in shared.cmd_opts.use_cpu or "all" in shared.cmd_opts.use_cpu:
|
|
return cpu
|
|
|
|
return get_optimal_device()
|
|
|
|
|
|
def torch_gc():
|
|
|
|
if torch.cuda.is_available():
|
|
with torch.cuda.device(get_cuda_device_string()):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
if has_mps():
|
|
mac_specific.torch_mps_gc()
|
|
|
|
if has_xpu():
|
|
xpu_specific.torch_xpu_gc()
|
|
|
|
|
|
def enable_tf32():
|
|
if torch.cuda.is_available():
|
|
|
|
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
|
|
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
|
|
if cuda_no_autocast():
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
|
|
errors.run(enable_tf32, "Enabling TF32")
|
|
|
|
cpu: torch.device = torch.device("cpu")
|
|
fp8: bool = False
|
|
device: torch.device = None
|
|
device_interrogate: torch.device = None
|
|
device_gfpgan: torch.device = None
|
|
device_esrgan: torch.device = None
|
|
device_codeformer: torch.device = None
|
|
dtype: torch.dtype = torch.float16
|
|
dtype_vae: torch.dtype = torch.float16
|
|
dtype_unet: torch.dtype = torch.float16
|
|
dtype_inference: torch.dtype = torch.float16
|
|
unet_needs_upcast = False
|
|
|
|
|
|
def cond_cast_unet(input):
|
|
return input.to(dtype_unet) if unet_needs_upcast else input
|
|
|
|
|
|
def cond_cast_float(input):
|
|
return input.float() if unet_needs_upcast else input
|
|
|
|
|
|
nv_rng = None
|
|
patch_module_list = [
|
|
torch.nn.Linear,
|
|
torch.nn.Conv2d,
|
|
torch.nn.MultiheadAttention,
|
|
torch.nn.GroupNorm,
|
|
torch.nn.LayerNorm,
|
|
]
|
|
|
|
|
|
def manual_cast_forward(target_dtype):
|
|
def forward_wrapper(self, *args, **kwargs):
|
|
if any(
|
|
isinstance(arg, torch.Tensor) and arg.dtype != target_dtype
|
|
for arg in args
|
|
):
|
|
args = [arg.to(target_dtype) if isinstance(arg, torch.Tensor) else arg for arg in args]
|
|
kwargs = {k: v.to(target_dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
|
|
|
|
org_dtype = torch_utils.get_param(self).dtype
|
|
if org_dtype != target_dtype:
|
|
self.to(target_dtype)
|
|
result = self.org_forward(*args, **kwargs)
|
|
if org_dtype != target_dtype:
|
|
self.to(org_dtype)
|
|
|
|
if target_dtype != dtype_inference:
|
|
if isinstance(result, tuple):
|
|
result = tuple(
|
|
i.to(dtype_inference)
|
|
if isinstance(i, torch.Tensor)
|
|
else i
|
|
for i in result
|
|
)
|
|
elif isinstance(result, torch.Tensor):
|
|
result = result.to(dtype_inference)
|
|
return result
|
|
return forward_wrapper
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def manual_cast(target_dtype):
|
|
for module_type in patch_module_list:
|
|
org_forward = module_type.forward
|
|
if module_type == torch.nn.MultiheadAttention and has_xpu():
|
|
module_type.forward = manual_cast_forward(torch.float32)
|
|
else:
|
|
module_type.forward = manual_cast_forward(target_dtype)
|
|
module_type.org_forward = org_forward
|
|
try:
|
|
yield None
|
|
finally:
|
|
for module_type in patch_module_list:
|
|
module_type.forward = module_type.org_forward
|
|
|
|
|
|
def autocast(disable=False):
|
|
return contextlib.nullcontext()
|
|
|
|
|
|
def without_autocast(disable=False):
|
|
return contextlib.nullcontext()
|
|
|
|
|
|
class NansException(Exception):
|
|
pass
|
|
|
|
|
|
def test_for_nans(x, where):
|
|
if shared.cmd_opts.disable_nan_check:
|
|
return
|
|
|
|
if not torch.all(torch.isnan(x)).item():
|
|
return
|
|
|
|
if where == "unet":
|
|
message = "A tensor with all NaNs was produced in Unet."
|
|
|
|
if not shared.cmd_opts.no_half:
|
|
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
|
|
|
|
elif where == "vae":
|
|
message = "A tensor with all NaNs was produced in VAE."
|
|
|
|
if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae:
|
|
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
|
|
else:
|
|
message = "A tensor with all NaNs was produced."
|
|
|
|
message += " Use --disable-nan-check commandline argument to disable this check."
|
|
|
|
raise NansException(message)
|
|
|
|
|
|
@lru_cache
|
|
def first_time_calculation():
|
|
"""
|
|
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and
|
|
spends about 2.7 seconds doing that, at least wih NVidia.
|
|
"""
|
|
|
|
x = torch.zeros((1, 1)).to(device, dtype)
|
|
linear = torch.nn.Linear(1, 1).to(device, dtype)
|
|
linear(x)
|
|
|
|
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
|
|
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
|
|
conv2d(x)
|
|
|