Added my good ole pattern loss. God I love that thing, conv transpose pattern instantly wiped from vae

This commit is contained in:
Jaret Burkett
2023-07-20 15:44:16 -06:00
parent 982e0be7a9
commit 0761656a90
4 changed files with 56 additions and 12 deletions

View File

@@ -5,13 +5,14 @@ import itertools
class LosslessLatentDecoder(nn.Module):
def __init__(self, in_channels, latent_depth):
def __init__(self, in_channels, latent_depth, dtype=torch.float32):
super(LosslessLatentDecoder, self).__init__()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.latent_depth = latent_depth
self.in_channels = in_channels
self.out_channels = int(in_channels // (latent_depth * latent_depth))
numpy_kernel = self.build_kernel(in_channels, latent_depth)
self.kernel = torch.from_numpy(numpy_kernel).float()
self.kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
def build_kernel(self, in_channels, latent_depth):
# my old code from tensorflow.
@@ -39,13 +40,15 @@ class LosslessLatentDecoder(nn.Module):
class LosslessLatentEncoder(nn.Module):
def __init__(self, in_channels, latent_depth):
def __init__(self, in_channels, latent_depth, dtype=torch.float32):
super(LosslessLatentEncoder, self).__init__()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.latent_depth = latent_depth
self.in_channels = in_channels
self.out_channels = int(in_channels * (latent_depth * latent_depth))
numpy_kernel = self.build_kernel(in_channels, latent_depth)
self.kernel = torch.from_numpy(numpy_kernel).float()
self.kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
def build_kernel(self, in_channels, latent_depth):
# my old code from tensorflow.
@@ -72,13 +75,13 @@ class LosslessLatentEncoder(nn.Module):
class LosslessLatentVAE(nn.Module):
def __init__(self, in_channels, latent_depth):
def __init__(self, in_channels, latent_depth, dtype=torch.float32):
super(LosslessLatentVAE, self).__init__()
self.latent_depth = latent_depth
self.in_channels = in_channels
self.encoder = LosslessLatentEncoder(in_channels, latent_depth)
self.encoder = LosslessLatentEncoder(in_channels, latent_depth, dtype=dtype)
encoder_out_channels = self.encoder.out_channels
self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth)
self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth, dtype=dtype)
def forward(self, x):
latent = self.latent_encoder(x)

View File

@@ -1,4 +1,5 @@
import torch
from .llvae import LosslessLatentEncoder
def total_variation(image):
@@ -45,3 +46,40 @@ def get_gradient_penalty(critic, real, fake, device):
gradient_penalty = ((gradient_norm - 1) ** 2).mean()
return gradient_penalty
class PatternLoss(torch.nn.Module):
def __init__(self, pattern_size=4, dtype=torch.float32):
super().__init__()
self.pattern_size = pattern_size
self.llvae_encoder = LosslessLatentEncoder(3, pattern_size, dtype=dtype)
def forward(self, pred, target):
pred_latents = self.llvae_encoder(pred)
target_latents = self.llvae_encoder(target)
matrix_pixels = self.pattern_size * self.pattern_size
color_chans = pred_latents.shape[1] // 3
# pytorch
r_chans, g_chans, b_chans = torch.split(pred_latents, [color_chans, color_chans, color_chans], 1)
r_chans_target, g_chans_target, b_chans_target = torch.split(target_latents, [color_chans, color_chans, color_chans], 1)
def separated_chan_loss(latent_chan):
nonlocal matrix_pixels
chan_mean = torch.mean(latent_chan, dim=[1, 2, 3])
chan_splits = torch.split(latent_chan, [1 for i in range(matrix_pixels)], 1)
chan_loss = None
for chan in chan_splits:
this_mean = torch.mean(chan, dim=[1, 2, 3])
this_chan_loss = torch.abs(this_mean - chan_mean)
if chan_loss is None:
chan_loss = this_chan_loss
else:
chan_loss = chan_loss + this_chan_loss
chan_loss = chan_loss * (1 / matrix_pixels)
return chan_loss
r_chan_loss = torch.abs(separated_chan_loss(r_chans) - separated_chan_loss(r_chans_target))
g_chan_loss = torch.abs(separated_chan_loss(g_chans) - separated_chan_loss(g_chans_target))
b_chan_loss = torch.abs(separated_chan_loss(b_chans) - separated_chan_loss(b_chans_target))
return (r_chan_loss + g_chan_loss + b_chan_loss) * 0.3333

View File

@@ -6,13 +6,16 @@ def get_optimizer(
optimizer_type='adam',
learning_rate=1e-6
):
if optimizer_type == 'dadaptation':
lower_type = optimizer_type.lower()
if lower_type == 'dadaptation':
# dadaptation optimizer does not use standard learning rate. 1 is the default value
import dadaptation
print("Using DAdaptAdam optimizer")
optimizer = dadaptation.DAdaptAdam(params, lr=1.0)
elif optimizer_type == 'adam':
elif lower_type == 'adam':
optimizer = torch.optim.Adam(params, lr=float(learning_rate))
elif lower_type == 'adamw':
optimizer = torch.optim.AdamW(params, lr=float(learning_rate))
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
return optimizer