mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
More work on mean flow loss. Moved it to an adapter. Still not functioning properly though.
This commit is contained in:
@@ -11,6 +11,7 @@ from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
||||
from toolkit.models.clip_fusion import CLIPFusionModule
|
||||
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
|
||||
from toolkit.models.control_lora_adapter import ControlLoraAdapter
|
||||
from toolkit.models.mean_flow_adapter import MeanFlowAdapter
|
||||
from toolkit.models.i2v_adapter import I2VAdapter
|
||||
from toolkit.models.subpixel_adapter import SubpixelAdapter
|
||||
from toolkit.models.ilora import InstantLoRAModule
|
||||
@@ -98,6 +99,7 @@ class CustomAdapter(torch.nn.Module):
|
||||
self.single_value_adapter: SingleValueAdapter = None
|
||||
self.redux_adapter: ReduxImageEncoder = None
|
||||
self.control_lora: ControlLoraAdapter = None
|
||||
self.mean_flow_adapter: MeanFlowAdapter = None
|
||||
self.subpixel_adapter: SubpixelAdapter = None
|
||||
self.i2v_adapter: I2VAdapter = None
|
||||
|
||||
@@ -125,6 +127,16 @@ class CustomAdapter(torch.nn.Module):
|
||||
dtype=self.sd_ref().dtype,
|
||||
)
|
||||
self.load_state_dict(loaded_state_dict, strict=False)
|
||||
|
||||
@property
|
||||
def do_direct_save(self):
|
||||
# some adapters save their weights directly, others like ip adapters split the state dict
|
||||
if self.config.train_only_image_encoder:
|
||||
return True
|
||||
if self.config.type in ['control_lora', 'subpixel', 'i2v', 'redux', 'mean_flow']:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def setup_adapter(self):
|
||||
torch_dtype = get_torch_dtype(self.sd_ref().dtype)
|
||||
@@ -245,6 +257,13 @@ class CustomAdapter(torch.nn.Module):
|
||||
elif self.adapter_type == 'redux':
|
||||
vision_hidden_size = self.vision_encoder.config.hidden_size
|
||||
self.redux_adapter = ReduxImageEncoder(vision_hidden_size, 4096, self.device, torch_dtype)
|
||||
elif self.adapter_type == 'mean_flow':
|
||||
self.mean_flow_adapter = MeanFlowAdapter(
|
||||
self,
|
||||
sd=self.sd_ref(),
|
||||
config=self.config,
|
||||
train_config=self.train_config
|
||||
)
|
||||
elif self.adapter_type == 'control_lora':
|
||||
self.control_lora = ControlLoraAdapter(
|
||||
self,
|
||||
@@ -309,7 +328,7 @@ class CustomAdapter(torch.nn.Module):
|
||||
def setup_clip(self):
|
||||
adapter_config = self.config
|
||||
sd = self.sd_ref()
|
||||
if self.config.type in ["text_encoder", "llm_adapter", "single_value", "control_lora", "subpixel"]:
|
||||
if self.config.type in ["text_encoder", "llm_adapter", "single_value", "control_lora", "subpixel", "mean_flow"]:
|
||||
return
|
||||
if self.config.type == 'photo_maker':
|
||||
try:
|
||||
@@ -528,6 +547,14 @@ class CustomAdapter(torch.nn.Module):
|
||||
new_dict[k + '.' + k2] = v2
|
||||
self.control_lora.load_weights(new_dict, strict=strict)
|
||||
|
||||
if self.adapter_type == 'mean_flow':
|
||||
# state dict is seperated. so recombine it
|
||||
new_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
for k2, v2 in v.items():
|
||||
new_dict[k + '.' + k2] = v2
|
||||
self.mean_flow_adapter.load_weights(new_dict, strict=strict)
|
||||
|
||||
if self.adapter_type == 'i2v':
|
||||
# state dict is seperated. so recombine it
|
||||
new_dict = {}
|
||||
@@ -599,6 +626,11 @@ class CustomAdapter(torch.nn.Module):
|
||||
for k, v in d.items():
|
||||
state_dict[k] = v
|
||||
return state_dict
|
||||
elif self.adapter_type == 'mean_flow':
|
||||
d = self.mean_flow_adapter.get_state_dict()
|
||||
for k, v in d.items():
|
||||
state_dict[k] = v
|
||||
return state_dict
|
||||
elif self.adapter_type == 'i2v':
|
||||
d = self.i2v_adapter.get_state_dict()
|
||||
for k, v in d.items():
|
||||
@@ -757,7 +789,7 @@ class CustomAdapter(torch.nn.Module):
|
||||
prompt: Union[List[str], str],
|
||||
is_unconditional: bool = False,
|
||||
):
|
||||
if self.adapter_type in ['clip_fusion', 'ilora', 'vision_direct', 'redux', 'control_lora', 'subpixel', 'i2v']:
|
||||
if self.adapter_type in ['clip_fusion', 'ilora', 'vision_direct', 'redux', 'control_lora', 'subpixel', 'i2v', 'mean_flow']:
|
||||
return prompt
|
||||
elif self.adapter_type == 'text_encoder':
|
||||
# todo allow for training
|
||||
@@ -1319,6 +1351,10 @@ class CustomAdapter(torch.nn.Module):
|
||||
param_list = self.control_lora.get_params()
|
||||
for param in param_list:
|
||||
yield param
|
||||
elif self.config.type == 'mean_flow':
|
||||
param_list = self.mean_flow_adapter.get_params()
|
||||
for param in param_list:
|
||||
yield param
|
||||
elif self.config.type == 'i2v':
|
||||
param_list = self.i2v_adapter.get_params()
|
||||
for param in param_list:
|
||||
|
||||
@@ -135,7 +135,7 @@ class ControlLoraAdapter(torch.nn.Module):
|
||||
|
||||
network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
|
||||
if hasattr(sd, 'target_lora_modules'):
|
||||
network_kwargs['target_lin_modules'] = self.sd.target_lora_modules
|
||||
network_kwargs['target_lin_modules'] = sd.target_lora_modules
|
||||
|
||||
if 'ignore_if_contains' not in network_kwargs:
|
||||
network_kwargs['ignore_if_contains'] = []
|
||||
|
||||
@@ -176,60 +176,3 @@ def add_model_gpu_splitter_to_flux(
|
||||
transformer._pre_gpu_split_to = transformer.to
|
||||
transformer.to = partial(new_device_to, transformer)
|
||||
|
||||
|
||||
def mean_flow_time_text_embed_forward(self:CombinedTimestepTextProjEmbeddings, timestep, pooled_projection):
|
||||
# make zero timestep ending if none is passed
|
||||
if timestep.shape[0] == pooled_projection.shape[0]:
|
||||
timestep = torch.cat([timestep, torch.zeros_like(timestep)], dim=0) # timestep - 0 (final timestep) == same as start timestep
|
||||
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb_combo = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
|
||||
timesteps_emb_start, timesteps_emb_end = timesteps_emb_combo.chunk(2, dim=0)
|
||||
|
||||
timesteps_emb = timesteps_emb_start + timesteps_emb_end
|
||||
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
|
||||
conditioning = timesteps_emb + pooled_projections
|
||||
|
||||
return conditioning
|
||||
|
||||
def mean_flow_time_text_guidance_embed_forward(self: CombinedTimestepGuidanceTextProjEmbeddings, timestep, guidance, pooled_projection):
|
||||
# make zero timestep ending if none is passed
|
||||
if timestep.shape[0] == pooled_projection.shape[0]:
|
||||
timestep = torch.cat([timestep, torch.zeros_like(timestep)], dim=0) # timestep - 0 (final timestep) == same as start timestep
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
|
||||
guidance_proj = self.time_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
|
||||
timesteps_emb_start, timesteps_emb_end = timesteps_emb.chunk(2, dim=0)
|
||||
|
||||
time_guidance_emb = timesteps_emb_start + timesteps_emb_end + guidance_emb
|
||||
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
conditioning = time_guidance_emb + pooled_projections
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
def convert_flux_to_mean_flow(
|
||||
transformer: FluxTransformer2DModel,
|
||||
):
|
||||
if isinstance(transformer.time_text_embed, CombinedTimestepTextProjEmbeddings):
|
||||
transformer.time_text_embed.forward = partial(
|
||||
mean_flow_time_text_embed_forward, transformer.time_text_embed
|
||||
)
|
||||
elif isinstance(transformer.time_text_embed, CombinedTimestepGuidanceTextProjEmbeddings):
|
||||
transformer.time_text_embed.forward = partial(
|
||||
mean_flow_time_text_guidance_embed_forward, transformer.time_text_embed
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unsupported time_text_embed type: {}".format(
|
||||
type(transformer.time_text_embed)
|
||||
)
|
||||
)
|
||||
|
||||
282
toolkit/models/mean_flow_adapter.py
Normal file
282
toolkit/models/mean_flow_adapter.py
Normal file
@@ -0,0 +1,282 @@
|
||||
import inspect
|
||||
import weakref
|
||||
import torch
|
||||
from typing import TYPE_CHECKING
|
||||
from toolkit.lora_special import LoRASpecialNetwork
|
||||
from diffusers import FluxTransformer2DModel
|
||||
from diffusers.models.embeddings import (
|
||||
CombinedTimestepTextProjEmbeddings,
|
||||
CombinedTimestepGuidanceTextProjEmbeddings,
|
||||
)
|
||||
from functools import partial
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.stable_diffusion_model import StableDiffusion
|
||||
from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
|
||||
from toolkit.custom_adapter import CustomAdapter
|
||||
|
||||
|
||||
def mean_flow_time_text_embed_forward(
|
||||
self: CombinedTimestepTextProjEmbeddings, timestep, pooled_projection
|
||||
):
|
||||
mean_flow_adapter: "MeanFlowAdapter" = self.mean_flow_adapter_ref()
|
||||
# make zero timestep ending if none is passed
|
||||
if mean_flow_adapter.is_active and timestep.shape[0] == pooled_projection.shape[0]:
|
||||
timestep = torch.cat(
|
||||
[timestep, torch.zeros_like(timestep)], dim=0
|
||||
) # timestep - 0 (final timestep) == same as start timestep
|
||||
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(
|
||||
timesteps_proj.to(dtype=pooled_projection.dtype)
|
||||
) # (N, D)
|
||||
|
||||
# mean flow stuff
|
||||
if mean_flow_adapter.is_active:
|
||||
# todo make sure that timesteps is batched correctly, I think diffusers expects non batched timesteps
|
||||
orig_dtype = timesteps_emb.dtype
|
||||
timesteps_emb = timesteps_emb.to(torch.float32)
|
||||
timesteps_emb_start, timesteps_emb_end = timesteps_emb.chunk(2, dim=0)
|
||||
timesteps_emb = mean_flow_adapter.mean_flow_timestep_embedder(
|
||||
torch.cat([timesteps_emb_start, timesteps_emb_end], dim=-1)
|
||||
)
|
||||
timesteps_emb = timesteps_emb.to(orig_dtype)
|
||||
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
|
||||
conditioning = timesteps_emb + pooled_projections
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
def mean_flow_time_text_guidance_embed_forward(
|
||||
self: CombinedTimestepGuidanceTextProjEmbeddings,
|
||||
timestep,
|
||||
guidance,
|
||||
pooled_projection,
|
||||
):
|
||||
mean_flow_adapter: "MeanFlowAdapter" = self.mean_flow_adapter_ref()
|
||||
# make zero timestep ending if none is passed
|
||||
if mean_flow_adapter.is_active and timestep.shape[0] == pooled_projection.shape[0]:
|
||||
timestep = torch.cat(
|
||||
[timestep, torch.zeros_like(timestep)], dim=0
|
||||
) # timestep - 0 (final timestep) == same as start timestep
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(
|
||||
timesteps_proj.to(dtype=pooled_projection.dtype)
|
||||
) # (N, D)
|
||||
|
||||
guidance_proj = self.time_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(
|
||||
guidance_proj.to(dtype=pooled_projection.dtype)
|
||||
) # (N, D)
|
||||
|
||||
# mean flow stuff
|
||||
if mean_flow_adapter.is_active:
|
||||
# todo make sure that timesteps is batched correctly, I think diffusers expects non batched timesteps
|
||||
orig_dtype = timesteps_emb.dtype
|
||||
timesteps_emb = timesteps_emb.to(torch.float32)
|
||||
timesteps_emb_start, timesteps_emb_end = timesteps_emb.chunk(2, dim=0)
|
||||
timesteps_emb = mean_flow_adapter.mean_flow_timestep_embedder(
|
||||
torch.cat([timesteps_emb_start, timesteps_emb_end], dim=-1)
|
||||
)
|
||||
timesteps_emb = timesteps_emb.to(orig_dtype)
|
||||
|
||||
time_guidance_emb = timesteps_emb + guidance_emb
|
||||
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
conditioning = time_guidance_emb + pooled_projections
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
def convert_flux_to_mean_flow(
|
||||
transformer: FluxTransformer2DModel,
|
||||
):
|
||||
if isinstance(transformer.time_text_embed, CombinedTimestepTextProjEmbeddings):
|
||||
transformer.time_text_embed.forward = partial(
|
||||
mean_flow_time_text_embed_forward, transformer.time_text_embed
|
||||
)
|
||||
elif isinstance(
|
||||
transformer.time_text_embed, CombinedTimestepGuidanceTextProjEmbeddings
|
||||
):
|
||||
transformer.time_text_embed.forward = partial(
|
||||
mean_flow_time_text_guidance_embed_forward, transformer.time_text_embed
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unsupported time_text_embed type: {}".format(
|
||||
type(transformer.time_text_embed)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class MeanFlowAdapter(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
adapter: "CustomAdapter",
|
||||
sd: "StableDiffusion",
|
||||
config: "AdapterConfig",
|
||||
train_config: "TrainConfig",
|
||||
):
|
||||
super().__init__()
|
||||
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
||||
self.sd_ref = weakref.ref(sd)
|
||||
self.model_config: ModelConfig = sd.model_config
|
||||
self.network_config = config.lora_config
|
||||
self.train_config = train_config
|
||||
self.device_torch = sd.device_torch
|
||||
self.lora = None
|
||||
|
||||
if self.network_config is not None:
|
||||
network_kwargs = (
|
||||
{}
|
||||
if self.network_config.network_kwargs is None
|
||||
else self.network_config.network_kwargs
|
||||
)
|
||||
if hasattr(sd, "target_lora_modules"):
|
||||
network_kwargs["target_lin_modules"] = sd.target_lora_modules
|
||||
|
||||
if "ignore_if_contains" not in network_kwargs:
|
||||
network_kwargs["ignore_if_contains"] = []
|
||||
|
||||
self.lora = LoRASpecialNetwork(
|
||||
text_encoder=sd.text_encoder,
|
||||
unet=sd.unet,
|
||||
lora_dim=self.network_config.linear,
|
||||
multiplier=1.0,
|
||||
alpha=self.network_config.linear_alpha,
|
||||
train_unet=self.train_config.train_unet,
|
||||
train_text_encoder=self.train_config.train_text_encoder,
|
||||
conv_lora_dim=self.network_config.conv,
|
||||
conv_alpha=self.network_config.conv_alpha,
|
||||
is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
|
||||
is_v2=self.model_config.is_v2,
|
||||
is_v3=self.model_config.is_v3,
|
||||
is_pixart=self.model_config.is_pixart,
|
||||
is_auraflow=self.model_config.is_auraflow,
|
||||
is_flux=self.model_config.is_flux,
|
||||
is_lumina2=self.model_config.is_lumina2,
|
||||
is_ssd=self.model_config.is_ssd,
|
||||
is_vega=self.model_config.is_vega,
|
||||
dropout=self.network_config.dropout,
|
||||
use_text_encoder_1=self.model_config.use_text_encoder_1,
|
||||
use_text_encoder_2=self.model_config.use_text_encoder_2,
|
||||
use_bias=False,
|
||||
is_lorm=False,
|
||||
network_config=self.network_config,
|
||||
network_type=self.network_config.type,
|
||||
transformer_only=self.network_config.transformer_only,
|
||||
is_transformer=sd.is_transformer,
|
||||
base_model=sd,
|
||||
**network_kwargs,
|
||||
)
|
||||
self.lora.force_to(self.device_torch, dtype=torch.float32)
|
||||
self.lora._update_torch_multiplier()
|
||||
self.lora.apply_to(
|
||||
sd.text_encoder,
|
||||
sd.unet,
|
||||
self.train_config.train_text_encoder,
|
||||
self.train_config.train_unet,
|
||||
)
|
||||
self.lora.can_merge_in = False
|
||||
self.lora.prepare_grad_etc(sd.text_encoder, sd.unet)
|
||||
if self.train_config.gradient_checkpointing:
|
||||
self.lora.enable_gradient_checkpointing()
|
||||
|
||||
emb_dim = None
|
||||
if self.model_config.arch in ["flux", "flex2", "flex2"]:
|
||||
transformer: FluxTransformer2DModel = sd.unet
|
||||
emb_dim = (
|
||||
transformer.config.num_attention_heads
|
||||
* transformer.config.attention_head_dim
|
||||
)
|
||||
convert_flux_to_mean_flow(transformer)
|
||||
else:
|
||||
raise ValueError(f"Unsupported architecture: {self.model_config.arch}")
|
||||
|
||||
self.mean_flow_timestep_embedder = torch.nn.Linear(
|
||||
emb_dim * 2,
|
||||
emb_dim,
|
||||
)
|
||||
|
||||
# make the model function as before adding this adapter by initializing the weights
|
||||
with torch.no_grad():
|
||||
self.mean_flow_timestep_embedder.weight.zero_()
|
||||
self.mean_flow_timestep_embedder.weight[:, :emb_dim] = torch.eye(emb_dim)
|
||||
self.mean_flow_timestep_embedder.bias.zero_()
|
||||
|
||||
self.mean_flow_timestep_embedder.to(self.device_torch)
|
||||
|
||||
# add our adapter as a weak ref
|
||||
if self.model_config.arch in ["flux", "flex2", "flex2"]:
|
||||
sd.unet.time_text_embed.mean_flow_adapter_ref = weakref.ref(self)
|
||||
|
||||
def get_params(self):
|
||||
if self.lora is not None:
|
||||
config = {
|
||||
"text_encoder_lr": self.train_config.lr,
|
||||
"unet_lr": self.train_config.lr,
|
||||
}
|
||||
sig = inspect.signature(self.lora.prepare_optimizer_params)
|
||||
if "default_lr" in sig.parameters:
|
||||
config["default_lr"] = self.train_config.lr
|
||||
if "learning_rate" in sig.parameters:
|
||||
config["learning_rate"] = self.train_config.lr
|
||||
params_net = self.lora.prepare_optimizer_params(**config)
|
||||
|
||||
# we want only tensors here
|
||||
params = []
|
||||
for p in params_net:
|
||||
if isinstance(p, dict):
|
||||
params += p["params"]
|
||||
elif isinstance(p, torch.Tensor):
|
||||
params.append(p)
|
||||
elif isinstance(p, list):
|
||||
params += p
|
||||
else:
|
||||
params = []
|
||||
|
||||
# make sure the embedder is float32
|
||||
self.mean_flow_timestep_embedder.to(torch.float32)
|
||||
self.mean_flow_timestep_embedder.requires_grad = True
|
||||
self.mean_flow_timestep_embedder.train()
|
||||
|
||||
params += list(self.mean_flow_timestep_embedder.parameters())
|
||||
|
||||
# we need to be able to yield from the list like yield from params
|
||||
|
||||
return params
|
||||
|
||||
def load_weights(self, state_dict, strict=True):
|
||||
lora_sd = {}
|
||||
mean_flow_embedder_sd = {}
|
||||
for key, value in state_dict.items():
|
||||
if "mean_flow_timestep_embedder" in key:
|
||||
new_key = key.replace("transformer.mean_flow_timestep_embedder.", "")
|
||||
mean_flow_embedder_sd[new_key] = value
|
||||
else:
|
||||
lora_sd[key] = value
|
||||
|
||||
# todo process state dict before loading for models that need it
|
||||
if self.lora is not None:
|
||||
self.lora.load_weights(lora_sd)
|
||||
self.mean_flow_timestep_embedder.load_state_dict(
|
||||
mean_flow_embedder_sd, strict=False
|
||||
)
|
||||
|
||||
def get_state_dict(self):
|
||||
if self.lora is not None:
|
||||
lora_sd = self.lora.get_state_dict(dtype=torch.float32)
|
||||
else:
|
||||
lora_sd = {}
|
||||
# todo make sure we match loras elseware.
|
||||
mean_flow_embedder_sd = self.mean_flow_timestep_embedder.state_dict()
|
||||
for key, value in mean_flow_embedder_sd.items():
|
||||
lora_sd[f"transformer.mean_flow_timestep_embedder.{key}"] = value
|
||||
return lora_sd
|
||||
|
||||
@property
|
||||
def is_active(self):
|
||||
return self.adapter_ref().is_active
|
||||
Reference in New Issue
Block a user