git status

This commit is contained in:
Jaret Burkett
2025-10-01 14:12:17 -06:00
parent b07b88c46b
commit 3086a58e5b
8 changed files with 438 additions and 31 deletions

View File

@@ -30,8 +30,11 @@ if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
try: try:
from diffusers import QwenImageEditPlusPipeline from .qwen_image_pipelines import QwenImageEditPlusCustomPipeline
from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit_plus import CONDITION_IMAGE_SIZE, VAE_IMAGE_SIZE from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit_plus import (
CONDITION_IMAGE_SIZE,
VAE_IMAGE_SIZE,
)
except ImportError: except ImportError:
raise ImportError( raise ImportError(
"Diffusers is out of date. Update diffusers to the latest version by doing 'pip uninstall diffusers' and then 'pip install -r requirements.txt'" "Diffusers is out of date. Update diffusers to the latest version by doing 'pip uninstall diffusers' and then 'pip install -r requirements.txt'"
@@ -41,7 +44,7 @@ except ImportError:
class QwenImageEditPlusModel(QwenImageModel): class QwenImageEditPlusModel(QwenImageModel):
arch = "qwen_image_edit_plus" arch = "qwen_image_edit_plus"
_qwen_image_keep_visual = True _qwen_image_keep_visual = True
_qwen_pipeline = QwenImageEditPlusPipeline _qwen_pipeline = QwenImageEditPlusCustomPipeline
def __init__( def __init__(
self, self,
@@ -72,7 +75,7 @@ class QwenImageEditPlusModel(QwenImageModel):
def get_generation_pipeline(self): def get_generation_pipeline(self):
scheduler = QwenImageModel.get_train_scheduler() scheduler = QwenImageModel.get_train_scheduler()
pipeline: QwenImageEditPlusPipeline = QwenImageEditPlusPipeline( pipeline: QwenImageEditPlusCustomPipeline = QwenImageEditPlusCustomPipeline(
scheduler=scheduler, scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]), text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0], tokenizer=self.tokenizer[0],
@@ -87,7 +90,7 @@ class QwenImageEditPlusModel(QwenImageModel):
def generate_single_image( def generate_single_image(
self, self,
pipeline: QwenImageEditPlusPipeline, pipeline: QwenImageEditPlusCustomPipeline,
gen_config: GenerateImageConfig, gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds, conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds, unconditional_embeds: PromptEmbeds,
@@ -147,6 +150,7 @@ class QwenImageEditPlusModel(QwenImageModel):
latents=gen_config.latents, latents=gen_config.latents,
generator=generator, generator=generator,
callback_on_step_end=callback_on_step_end, callback_on_step_end=callback_on_step_end,
do_cfg_norm=gen_config.do_cfg_norm,
**extra, **extra,
).images[0] ).images[0]
return img return img
@@ -223,7 +227,9 @@ class QwenImageEditPlusModel(QwenImageModel):
if batch.control_tensor_list is not None: if batch.control_tensor_list is not None:
if len(batch.control_tensor_list) != batch_size: if len(batch.control_tensor_list) != batch_size:
raise ValueError("Control tensor list length does not match batch size") raise ValueError(
"Control tensor list length does not match batch size"
)
b = 0 b = 0
for control_tensor_list in batch.control_tensor_list: for control_tensor_list in batch.control_tensor_list:
# control tensor list is a list of tensors for this batch item # control tensor list is a list of tensors for this batch item
@@ -231,7 +237,9 @@ class QwenImageEditPlusModel(QwenImageModel):
# pack control # pack control
for control_img in control_tensor_list: for control_img in control_tensor_list:
# control images are 0 - 1 scale, shape (1, ch, height, width) # control images are 0 - 1 scale, shape (1, ch, height, width)
control_img = control_img.to(self.device_torch, dtype=self.torch_dtype) control_img = control_img.to(
self.device_torch, dtype=self.torch_dtype
)
# if it is only 3 dim, add batch dim # if it is only 3 dim, add batch dim
if len(control_img.shape) == 3: if len(control_img.shape) == 3:
control_img = control_img.unsqueeze(0) control_img = control_img.unsqueeze(0)
@@ -255,25 +263,41 @@ class QwenImageEditPlusModel(QwenImageModel):
dtype=self.torch_dtype, dtype=self.torch_dtype,
) )
clb, cl_num_channels_latents, cl_height, cl_width = control_latent.shape clb, cl_num_channels_latents, cl_height, cl_width = (
control_latent.shape
)
control = control_latent.view( control = control_latent.view(
1, cl_num_channels_latents, cl_height // 2, 2, cl_width // 2, 2 1,
cl_num_channels_latents,
cl_height // 2,
2,
cl_width // 2,
2,
) )
control = control.permute(0, 2, 4, 1, 3, 5) control = control.permute(0, 2, 4, 1, 3, 5)
control = control.reshape( control = control.reshape(
1, (cl_height // 2) * (cl_width // 2), num_channels_latents * 4 1,
(cl_height // 2) * (cl_width // 2),
num_channels_latents * 4,
) )
img_shapes[b].append((1, cl_height // 2, cl_width // 2)) img_shapes[b].append((1, cl_height // 2, cl_width // 2))
controls.append(control) controls.append(control)
# stack controls on dim 1 # stack controls on dim 1
control = torch.cat(controls, dim=1).to(packed_latents_list[b].device, dtype=packed_latents_list[b].dtype) control = torch.cat(controls, dim=1).to(
packed_latents_list[b].device,
dtype=packed_latents_list[b].dtype,
)
# concat with latents # concat with latents
packed_latents_with_control = torch.cat([packed_latents_list[b], control], dim=1) packed_latents_with_control = torch.cat(
[packed_latents_list[b], control], dim=1
)
packed_latents_with_controls_list.append(packed_latents_with_control) packed_latents_with_controls_list.append(
packed_latents_with_control
)
b += 1 b += 1
@@ -289,7 +313,9 @@ class QwenImageEditPlusModel(QwenImageModel):
) )
noise_pred = self.transformer( noise_pred = self.transformer(
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype).detach(), hidden_states=latent_model_input.to(
self.device_torch, self.torch_dtype
).detach(),
timestep=(timestep / 1000).detach(), timestep=(timestep / 1000).detach(),
guidance=None, guidance=None,
encoder_hidden_states=enc_hs.detach(), encoder_hidden_states=enc_hs.detach(),

View File

@@ -0,0 +1,354 @@
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
try:
from diffusers import QwenImageEditPlusPipeline
from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit_plus import (
CONDITION_IMAGE_SIZE,
VAE_IMAGE_SIZE,
XLA_AVAILABLE,
logger,
calculate_dimensions,
calculate_shift,
retrieve_timesteps,
)
except ImportError:
raise ImportError(
"Diffusers is out of date. Update diffusers to the latest version by doing 'pip uninstall diffusers' and then 'pip install -r requirements.txt'"
)
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
class QwenImageEditPlusCustomPipeline(QwenImageEditPlusPipeline):
@torch.no_grad()
def __call__(
self,
image: Optional[PipelineImageInput] = None,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
true_cfg_scale: float = 4.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: Optional[float] = None,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
do_cfg_norm: bool = False,
):
image_size = image[-1].size if isinstance(image, list) else image.size
calculated_width, calculated_height = calculate_dimensions(
1024 * 1024, image_size[0] / image_size[1]
)
height = height or calculated_height
width = width or calculated_width
multiple_of = self.vae_scale_factor * 2
width = width // multiple_of * multiple_of
height = height // multiple_of * multiple_of
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Preprocess image
if image is not None and not (
isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels
):
if not isinstance(image, list):
image = [image]
condition_image_sizes = []
condition_images = []
vae_image_sizes = []
vae_images = []
for img in image:
image_width, image_height = img.size
condition_width, condition_height = calculate_dimensions(
CONDITION_IMAGE_SIZE, image_width / image_height
)
vae_width, vae_height = calculate_dimensions(
VAE_IMAGE_SIZE, image_width / image_height
)
condition_image_sizes.append((condition_width, condition_height))
vae_image_sizes.append((vae_width, vae_height))
condition_images.append(
self.image_processor.resize(img, condition_height, condition_width)
)
vae_images.append(
self.image_processor.preprocess(
img, vae_height, vae_width
).unsqueeze(2)
)
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None
and negative_prompt_embeds_mask is not None
)
if true_cfg_scale > 1 and not has_neg_prompt:
logger.warning(
f"true_cfg_scale is passed as {true_cfg_scale}, but classifier-free guidance is not enabled since no negative_prompt is provided."
)
elif true_cfg_scale <= 1 and has_neg_prompt:
logger.warning(
" negative_prompt is passed but classifier-free guidance is not enabled since true_cfg_scale <= 1"
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
image=condition_images,
prompt=prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if do_true_cfg:
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
image=condition_images,
prompt=negative_prompt,
prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=negative_prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, image_latents = self.prepare_latents(
vae_images,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
img_shapes = [
[
(
1,
height // self.vae_scale_factor // 2,
width // self.vae_scale_factor // 2,
),
*[
(
1,
vae_height // self.vae_scale_factor // 2,
vae_width // self.vae_scale_factor // 2,
)
for vae_width, vae_height in vae_image_sizes
],
]
] * batch_size
# 5. Prepare timesteps
sigmas = (
np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
if sigmas is None
else sigmas
)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds and guidance_scale is None:
raise ValueError("guidance_scale is required for guidance-distilled model.")
elif self.transformer.config.guidance_embeds:
guidance = torch.full(
[1], guidance_scale, device=device, dtype=torch.float32
)
guidance = guidance.expand(latents.shape[0])
elif not self.transformer.config.guidance_embeds and guidance_scale is not None:
logger.warning(
f"guidance_scale is passed as {guidance_scale}, but ignored since the model is not guidance-distilled."
)
guidance = None
elif not self.transformer.config.guidance_embeds and guidance_scale is None:
guidance = None
if self.attention_kwargs is None:
self._attention_kwargs = {}
txt_seq_lens = (
prompt_embeds_mask.sum(dim=1).tolist()
if prompt_embeds_mask is not None
else None
)
negative_txt_seq_lens = (
negative_prompt_embeds_mask.sum(dim=1).tolist()
if negative_prompt_embeds_mask is not None
else None
)
# 6. Denoising loop
self.scheduler.set_begin_index(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
with self.transformer.cache_context("cond"):
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=prompt_embeds_mask,
encoder_hidden_states=prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
if do_true_cfg:
with self.transformer.cache_context("uncond"):
neg_noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=negative_prompt_embeds_mask,
encoder_hidden_states=negative_prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=negative_txt_seq_lens,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
comb_pred = neg_noise_pred + true_cfg_scale * (
noise_pred - neg_noise_pred
)
if do_cfg_norm:
# the official code does this, but I find it hurts more often than it helps, leaving it optional but off by default
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
noise_pred = comb_pred * (cond_norm / noise_norm)
else:
noise_pred = comb_pred
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(
noise_pred, t, latents, return_dict=False
)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(
latents, height, width, self.vae_scale_factor
)
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(
1, self.vae.config.z_dim, 1, 1, 1
).to(latents.device, latents.dtype)
latents = latents / latents_std + latents_mean
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return QwenImagePipelineOutput(images=image)

View File

@@ -348,6 +348,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
ctrl_img_1=sample_item.ctrl_img_1, ctrl_img_1=sample_item.ctrl_img_1,
ctrl_img_2=sample_item.ctrl_img_2, ctrl_img_2=sample_item.ctrl_img_2,
ctrl_img_3=sample_item.ctrl_img_3, ctrl_img_3=sample_item.ctrl_img_3,
do_cfg_norm=sample_config.do_cfg_norm,
**extra_args **extra_args
)) ))

View File

@@ -70,6 +70,8 @@ class SampleItem:
print(f"Invalid network_multiplier {self.network_multiplier}, defaulting to 1.0") print(f"Invalid network_multiplier {self.network_multiplier}, defaulting to 1.0")
self.network_multiplier = 1.0 self.network_multiplier = 1.0
# only for models that support it, (qwen image edit 2509 for now)
self.do_cfg_norm: bool = kwargs.get('do_cfg_norm', False)
class SampleConfig: class SampleConfig:
def __init__(self, **kwargs): def __init__(self, **kwargs):
@@ -104,6 +106,8 @@ class SampleConfig:
] ]
raw_samples = kwargs.get('samples', default_samples_kwargs) raw_samples = kwargs.get('samples', default_samples_kwargs)
self.samples = [SampleItem(self, **item) for item in raw_samples] self.samples = [SampleItem(self, **item) for item in raw_samples]
# only for models that support it, (qwen image edit 2509 for now)
self.do_cfg_norm: bool = kwargs.get('do_cfg_norm', False)
@property @property
def prompts(self): def prompts(self):
@@ -993,7 +997,8 @@ class GenerateImageConfig:
ctrl_img_3: Optional[str] = None, # third control image for multi control model ctrl_img_3: Optional[str] = None, # third control image for multi control model
num_frames: int = 1, num_frames: int = 1,
fps: int = 15, fps: int = 15,
ctrl_idx: int = 0 ctrl_idx: int = 0,
do_cfg_norm: bool = False,
): ):
self.width: int = width self.width: int = width
self.height: int = height self.height: int = height
@@ -1064,6 +1069,8 @@ class GenerateImageConfig:
self.logger = logger self.logger = logger
self.do_cfg_norm: bool = do_cfg_norm
def set_gen_time(self, gen_time: int = None): def set_gen_time(self, gen_time: int = None):
if gen_time is not None: if gen_time is not None:
self.gen_time = gen_time self.gen_time = gen_time

View File

@@ -0,0 +1 @@
from .manager import MemoryManager

View File

@@ -0,0 +1,12 @@
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from toolkit.models.base_model import BaseModel
class MemoryManager:
def __init__(
self,
model: "BaseModel",
):
self.model: "BaseModel" = model

View File

@@ -41,6 +41,7 @@ from torchvision.transforms import functional as TF
from toolkit.accelerator import get_accelerator, unwrap_model from toolkit.accelerator import get_accelerator, unwrap_model
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from toolkit.print import print_acc from toolkit.print import print_acc
from toolkit.memory_management import MemoryManager
if TYPE_CHECKING: if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork from toolkit.lora_special import LoRASpecialNetwork
@@ -186,6 +187,8 @@ class BaseModel:
# do not resize control images # do not resize control images
self.use_raw_control_images = False self.use_raw_control_images = False
self.memory_manager = MemoryManager(self)
# properties for old arch for backwards compatibility # properties for old arch for backwards compatibility
@property @property
def unet(self): def unet(self):

View File

@@ -70,6 +70,7 @@ from typing import TYPE_CHECKING
from toolkit.print import print_acc from toolkit.print import print_acc
from diffusers import FluxFillPipeline from diffusers import FluxFillPipeline
from transformers import AutoModel, AutoTokenizer, Gemma2Model, Qwen2Model, LlamaModel from transformers import AutoModel, AutoTokenizer, Gemma2Model, Qwen2Model, LlamaModel
from toolkit.memory_management import MemoryManager
if TYPE_CHECKING: if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork from toolkit.lora_special import LoRASpecialNetwork
@@ -224,6 +225,8 @@ class StableDiffusion:
# do not resize control images # do not resize control images
self.use_raw_control_images = False self.use_raw_control_images = False
self.memory_manager = MemoryManager(self)
# properties for old arch for backwards compatibility # properties for old arch for backwards compatibility
@property @property
def is_xl(self): def is_xl(self):