Added beginning or lokr

This commit is contained in:
Jaret Burkett
2025-02-20 12:47:42 -07:00
parent 9f6030620f
commit 33fdfd6091

282
toolkit/models/lokr.py Normal file
View File

@@ -0,0 +1,282 @@
# based heavily on https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from toolkit.network_mixins import ToolkitModuleMixin
from typing import TYPE_CHECKING, Union, List
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
# 4, build custom backward function
# -
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1
128 -> 16, 8 128 -> 64, 2 128 -> 32, 4 128 -> 16, 8 128 -> 16, 8
250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2
360 -> 45, 8 360 -> 180, 2 360 -> 90, 4 360 -> 45, 8 360 -> 45, 8
512 -> 32, 16 512 -> 256, 2 512 -> 128, 4 512 -> 64, 8 512 -> 32, 16
1024 -> 32, 32 1024 -> 512, 2 1024 -> 256, 4 1024 -> 128, 8 1024 -> 64, 16
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
return m, n
if factor == -1:
factor = dimension
m, n = 1, dimension
length = m + n
while m<n:
new_m = m + 1
while dimension%new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m>factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n
def make_weight_cp(t, wa, wb):
rebuild2 = torch.einsum('i j k l, i p, j r -> p r k l', t, wa, wb) # [c, d, k1, k2]
return rebuild2
def make_kron(w1, w2, scale):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
rebuild = torch.kron(w1, w2)
return rebuild*scale
class LokrModule(ToolkitModuleMixin, nn.Module):
"""
modifed from kohya-ss/sd-scripts/networks/lora:LoRAModule
and from KohakuBlueleaf/LyCORIS/lycoris:loha:LoHaModule
and from KohakuBlueleaf/LyCORIS/lycoris:locon:LoconModule
"""
def __init__(
self,
lora_name,
org_module: nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=0.,
rank_dropout=0.,
module_dropout=0.,
use_cp=False,
decompose_both = False,
network: 'LoRASpecialNetwork' = None,
factor:int=-1, # factorization factor
**kwargs,
):
""" if alpha == 0 or None, alpha is rank (no scaling). """
ToolkitModuleMixin.__init__(self, network=network)
torch.nn.Module.__init__(self)
factor = int(factor)
self.lora_name = lora_name
self.lora_dim = lora_dim
self.cp = False
self.use_w1 = False
self.use_w2 = False
self.shape = org_module.weight.shape
if org_module.__class__.__name__ == 'Conv2d':
in_dim = org_module.in_channels
k_size = org_module.kernel_size
out_dim = org_module.out_channels
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
shape = ((out_l, out_k), (in_m, in_n), *k_size) # ((a, b), (c, d), *k_size)
self.cp = use_cp and k_size!=(1, 1)
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim >= max(shape[0][1], shape[1][1])/2:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(torch.empty(shape[0][1], shape[1][1], *k_size))
elif self.cp:
self.lokr_t2 = nn.Parameter(torch.empty(lora_dim, lora_dim, shape[2], shape[3]))
self.lokr_w2_a = nn.Parameter(torch.empty(lora_dim, shape[0][1])) # b, 1-mode
self.lokr_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1][1])) # d, 2-mode
else: # Conv2d not cp
# bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1][1]*shape[2]*shape[3]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d*k1*k2)) = (a, b)⊗(c, d*k1*k2) = (ac, bd*k1*k2)
self.op = F.conv2d
self.extra_args = {
"stride": org_module.stride,
"padding": org_module.padding,
"dilation": org_module.dilation,
"groups": org_module.groups
}
else: # Linear
in_dim = org_module.in_features
out_dim = org_module.out_features
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
shape = ((out_l, out_k), (in_m, in_n)) # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
# smaller part. weight scale
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim < max(shape[0][1], shape[1][1])/2:
# bigger part. weight and LoRA. [b, dim] x [dim, d]
self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1][1]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d)) = (a, b)⊗(c, d) = (ac, bd)
else:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))
self.op = F.linear
self.extra_args = {}
self.dropout = dropout
if dropout:
print("[WARN]LoHa/LoKr haven't implemented normal dropout yet.")
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if isinstance(alpha, torch.Tensor):
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = lora_dim if alpha is None or alpha == 0 else alpha
if self.use_w2 and self.use_w1:
#use scale = 1
alpha = lora_dim
self.scale = alpha / self.lora_dim
self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える
if self.use_w2:
torch.nn.init.constant_(self.lokr_w2, 0)
else:
if self.cp:
torch.nn.init.kaiming_uniform_(self.lokr_t2, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w2_a, a=math.sqrt(5))
torch.nn.init.constant_(self.lokr_w2_b, 0)
if self.use_w1:
torch.nn.init.kaiming_uniform_(self.lokr_w1, a=math.sqrt(5))
else:
torch.nn.init.kaiming_uniform_(self.lokr_w1_a, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w1_b, a=math.sqrt(5))
self.multiplier = multiplier
self.org_module = [org_module]
weight = make_kron(
self.lokr_w1 if self.use_w1 else self.lokr_w1_a@self.lokr_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else self.lokr_w2_a@self.lokr_w2_b),
torch.tensor(self.multiplier * self.scale)
)
assert torch.sum(torch.isnan(weight)) == 0, "weight is nan"
# Same as locon.py
def apply_to(self):
self.org_forward = self.org_module[0].forward
self.org_module[0].forward = self.forward
def get_weight(self, orig_weight = None):
weight = make_kron(
self.lokr_w1 if self.use_w1 else self.lokr_w1_a@self.lokr_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else self.lokr_w2_a@self.lokr_w2_b),
torch.tensor(self.scale)
)
if orig_weight is not None:
weight = weight.reshape(orig_weight.shape)
if self.training and self.rank_dropout:
drop = torch.rand(weight.size(0)) < self.rank_dropout
weight *= drop.view(-1, [1]*len(weight.shape[1:])).to(weight.device)
return weight
@torch.no_grad()
def apply_max_norm(self, max_norm, device=None):
orig_norm = self.get_weight().norm()
norm = torch.clamp(orig_norm, max_norm/2)
desired = torch.clamp(norm, max=max_norm)
ratio = desired.cpu()/norm.cpu()
scaled = ratio.item() != 1.0
if scaled:
modules = (4 - self.use_w1 - self.use_w2 + (not self.use_w2 and self.cp))
if self.use_w1:
self.lokr_w1 *= ratio**(1/modules)
else:
self.lokr_w1_a *= ratio**(1/modules)
self.lokr_w1_b *= ratio**(1/modules)
if self.use_w2:
self.lokr_w2 *= ratio**(1/modules)
else:
if self.cp:
self.lokr_t2 *= ratio**(1/modules)
self.lokr_w2_a *= ratio**(1/modules)
self.lokr_w2_b *= ratio**(1/modules)
return scaled, orig_norm*ratio
def forward(self, x):
if self.module_dropout and self.training:
if torch.rand(1) < self.module_dropout:
return self.op(
x,
self.org_module[0].weight.data,
None if self.org_module[0].bias is None else self.org_module[0].bias.data
)
weight = (
self.org_module[0].weight.data
+ self.get_weight(self.org_module[0].weight.data) * self.multiplier
)
bias = None if self.org_module[0].bias is None else self.org_module[0].bias.data
return self.op(
x,
weight.view(self.shape),
bias,
**self.extra_args
)