Added ability to train control loras. Other important bug fixes thrown in

This commit is contained in:
Jaret Burkett
2025-03-14 18:03:00 -06:00
parent 391329dbdc
commit 3812957bc9
7 changed files with 365 additions and 19 deletions

View File

@@ -106,7 +106,7 @@ class LoRMConfig:
})
NetworkType = Literal['lora', 'locon', 'lorm']
NetworkType = Literal['lora', 'locon', 'lorm', 'lokr']
class NetworkConfig:
@@ -151,7 +151,7 @@ class NetworkConfig:
self.lokr_factor = kwargs.get('lokr_factor', -1)
AdapterTypes = Literal['t2i', 'ip', 'ip+', 'clip', 'ilora', 'photo_maker', 'control_net']
AdapterTypes = Literal['t2i', 'ip', 'ip+', 'clip', 'ilora', 'photo_maker', 'control_net', 'control_lora']
CLIPLayer = Literal['penultimate_hidden_states', 'image_embeds', 'last_hidden_state']
@@ -234,6 +234,13 @@ class AdapterConfig:
# for llm adapter
self.num_cloned_blocks: int = kwargs.get('num_cloned_blocks', 0)
self.quantize_llm: bool = kwargs.get('quantize_llm', False)
# for control lora only
lora_config: dict = kwargs.get('lora_config', None)
if lora_config is not None:
self.lora_config: NetworkConfig = NetworkConfig(**lora_config)
else:
self.lora_config = None
class EmbeddingConfig:
@@ -521,6 +528,32 @@ class ModelConfig:
self.arch: ModelArch = kwargs.get("arch", None)
# handle migrating to new model arch
if self.arch is not None:
# reverse the arch to the old style
if self.arch == 'sd2':
self.is_v2 = True
elif self.arch == 'sd3':
self.is_v3 = True
elif self.arch == 'sdxl':
self.is_xl = True
elif self.arch == 'pixart':
self.is_pixart = True
elif self.arch == 'pixart_sigma':
self.is_pixart_sigma = True
elif self.arch == 'auraflow':
self.is_auraflow = True
elif self.arch == 'flux':
self.is_flux = True
elif self.arch == 'flex2':
self.is_flex2 = True
elif self.arch == 'lumina2':
self.is_lumina2 = True
elif self.arch == 'vega':
self.is_vega = True
elif self.arch == 'ssd':
self.is_ssd = True
else:
pass
if self.arch is None:
if kwargs.get('is_v2', False):
self.arch = 'sd2'

View File

@@ -7,8 +7,10 @@ from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, CLIPTextModel, \
CLIPTokenizer, T5Tokenizer
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.models.clip_fusion import CLIPFusionModule
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.control_lora_adapter import ControlLoraAdapter
from toolkit.models.ilora import InstantLoRAModule
from toolkit.models.single_value_adapter import SingleValueAdapter
from toolkit.models.te_adapter import TEAdapter
@@ -29,7 +31,7 @@ from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProces
AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import Resampler
from toolkit.config_modules import AdapterConfig, AdapterTypes
from toolkit.config_modules import AdapterConfig, AdapterTypes, TrainConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
@@ -58,10 +60,11 @@ import torch.nn.functional as F
class CustomAdapter(torch.nn.Module):
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig', train_config: 'TrainConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.train_config = train_config
self.device = self.sd_ref().unet.device
self.image_processor: CLIPImageProcessor = None
self.input_size = 224
@@ -97,6 +100,7 @@ class CustomAdapter(torch.nn.Module):
self.vd_adapter: VisionDirectAdapter = None
self.single_value_adapter: SingleValueAdapter = None
self.redux_adapter: ReduxImageEncoder = None
self.control_lora: ControlLoraAdapter = None
self.conditional_embeds: Optional[torch.Tensor] = None
self.unconditional_embeds: Optional[torch.Tensor] = None
@@ -240,6 +244,13 @@ class CustomAdapter(torch.nn.Module):
elif self.adapter_type == 'redux':
vision_hidden_size = self.vision_encoder.config.hidden_size
self.redux_adapter = ReduxImageEncoder(vision_hidden_size, 4096, self.device, torch_dtype)
elif self.adapter_type == 'control_lora':
self.control_lora = ControlLoraAdapter(
self,
sd=self.sd_ref(),
config=self.config,
train_config=self.train_config
)
else:
raise ValueError(f"unknown adapter type: {self.adapter_type}")
@@ -271,7 +282,7 @@ class CustomAdapter(torch.nn.Module):
def setup_clip(self):
adapter_config = self.config
sd = self.sd_ref()
if self.config.type in ["text_encoder", "llm_adapter", "single_value"]:
if self.config.type in ["text_encoder", "llm_adapter", "single_value", "control_lora"]:
return
if self.config.type == 'photo_maker':
try:
@@ -481,6 +492,14 @@ class CustomAdapter(torch.nn.Module):
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.redux_adapter.load_state_dict(new_dict, strict=True)
if self.adapter_type == 'control_lora':
# state dict is seperated. so recombine it
new_dict = {}
for k, v in state_dict.items():
for k2, v2 in v.items():
new_dict[k + '.' + k2] = v2
self.control_lora.load_weights(new_dict, strict=strict)
pass
@@ -532,6 +551,11 @@ class CustomAdapter(torch.nn.Module):
for k, v in d.items():
state_dict[k] = v
return state_dict
elif self.adapter_type == 'control_lora':
d = self.control_lora.get_state_dict()
for k, v in d.items():
state_dict[k] = v
return state_dict
else:
raise NotImplementedError
@@ -541,6 +565,33 @@ class CustomAdapter(torch.nn.Module):
self.unconditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
else:
self.conditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
def condition_noisy_latents(self, latents: torch.Tensor, batch:DataLoaderBatchDTO):
with torch.no_grad():
if self.adapter_type in ['control_lora']:
sd: StableDiffusion = self.sd_ref()
control_tensor = batch.control_tensor
if control_tensor is None:
# concat random normal noise onto the latents
# check dimension, this is before they are rearranged
# it is latent_model_input = torch.cat([latents, control_image], dim=2) after rearranging
latents = torch.cat((latents, torch.randn_like(latents)), dim=1)
return latents.detach()
# it is 0-1 need to convert to -1 to 1
control_tensor = control_tensor * 2 - 1
control_tensor = control_tensor.to(sd.vae_device_torch, dtype=sd.torch_dtype)
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]:
control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bicubic')
# encode it
control_latent = sd.encode_images(control_tensor).to(latents.device, latents.dtype)
# concat it onto the latents
latents = torch.cat((latents, control_latent), dim=1)
return latents.detach()
return latents
def condition_prompt(
@@ -548,7 +599,7 @@ class CustomAdapter(torch.nn.Module):
prompt: Union[List[str], str],
is_unconditional: bool = False,
):
if self.adapter_type == 'clip_fusion' or self.adapter_type == 'ilora' or self.adapter_type == 'vision_direct' or self.adapter_type == 'redux':
if self.adapter_type in ['clip_fusion', 'ilora', 'vision_direct', 'redux', 'control_lora']:
return prompt
elif self.adapter_type == 'text_encoder':
# todo allow for training
@@ -1067,6 +1118,10 @@ class CustomAdapter(torch.nn.Module):
yield from self.single_value_adapter.parameters(recurse)
elif self.config.type == 'redux':
yield from self.redux_adapter.parameters(recurse)
elif self.config.type == 'control_lora':
param_list = self.control_lora.get_params()
for param in param_list:
yield param
else:
raise NotImplementedError

View File

@@ -0,0 +1,239 @@
import inspect
import weakref
import torch
from typing import TYPE_CHECKING
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import FluxTransformer2DModel
# weakref
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
from toolkit.custom_adapter import CustomAdapter
# after each step we concat the control image with the latents
# latent_model_input = torch.cat([latents, control_image], dim=2)
# the x_embedder has a full rank lora to handle the additional channels
# this replaces the x_embedder with a full rank lora. on flux this is
# x_embedder(diffusers) or img_in(bfl)
# Flux
# img_in.lora_A.weight [128, 128]
# img_in.lora_B.bias [3072]
# img_in.lora_B.weight [3072, 128]
class ImgEmbedder(torch.nn.Module):
def __init__(
self,
adapter: 'ControlLoraAdapter',
orig_layer: torch.nn.Module,
in_channels=128,
out_channels=3072,
bias=True
):
super().__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.orig_layer_ref: weakref.ref = weakref.ref(orig_layer)
self.lora_A = torch.nn.Linear(in_channels, in_channels, bias=False) # lora down
self.lora_B = torch.nn.Linear(in_channels, out_channels, bias=bias) # lora up
@classmethod
def from_model(
cls,
model: FluxTransformer2DModel,
adapter: 'ControlLoraAdapter',
num_channel_multiplier=2
):
if model.__class__.__name__ == 'FluxTransformer2DModel':
x_embedder: torch.nn.Linear = model.x_embedder
img_embedder = cls(
adapter,
orig_layer=x_embedder,
in_channels=x_embedder.in_features * num_channel_multiplier, # adding additional control img channels
out_channels=x_embedder.out_features,
bias=x_embedder.bias is not None
)
# hijack the forward method
x_embedder._orig_ctrl_lora_forward = x_embedder.forward
x_embedder.forward = img_embedder.forward
dtype = x_embedder.weight.dtype
device = x_embedder.weight.device
# since we are adding control channels, we want those channels to be zero starting out
# so they have no effect. It will match lora_B weight and bias, and we concat 0s for the input of the new channels
# lora_a needs to be identity so that lora_b output matches lora_a output on init
img_embedder.lora_A.weight.data = torch.eye(x_embedder.in_features * num_channel_multiplier).to(dtype=torch.float32, device=device)
weight_b = x_embedder.weight.data.clone().to(dtype=torch.float32, device=device)
# concat 0s for the new channels
weight_b = torch.cat([weight_b, torch.zeros(weight_b.shape[0], weight_b.shape[1] * (num_channel_multiplier - 1)).to(device)], dim=1)
img_embedder.lora_B.weight.data = weight_b.clone().to(dtype=torch.float32)
img_embedder.lora_B.bias.data = x_embedder.bias.data.clone().to(dtype=torch.float32)
# update the config of the transformer
model.config.in_channels = model.config.in_channels * num_channel_multiplier
model.config["in_channels"] = model.config.in_channels
return img_embedder
else:
raise ValueError("Model not supported")
@property
def is_active(self):
return self.adapter_ref().is_active
def forward(self, x):
if not self.is_active:
# make sure lora is not active
self.adapter_ref().control_lora.is_active = False
return self.orig_layer_ref()._orig_ctrl_lora_forward(x)
# make sure lora is active
self.adapter_ref().control_lora.is_active = True
orig_device = x.device
orig_dtype = x.dtype
x = x.to(self.lora_A.weight.device, dtype=self.lora_A.weight.dtype)
x = self.lora_A(x)
x = self.lora_B(x)
x = x.to(orig_device, dtype=orig_dtype)
return x
class ControlLoraAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
config: 'AdapterConfig',
train_config: 'TrainConfig'
):
super().__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref = weakref.ref(sd)
self.model_config: ModelConfig = sd.model_config
self.network_config = config.lora_config
self.train_config = train_config
if self.network_config is None:
raise ValueError("LoRA config is missing")
network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
if hasattr(sd, 'target_lora_modules'):
network_kwargs['target_lin_modules'] = self.sd.target_lora_modules
if 'ignore_if_contains' not in network_kwargs:
network_kwargs['ignore_if_contains'] = []
# always ignore x_embedder
network_kwargs['ignore_if_contains'].append('x_embedder')
self.device_torch = sd.device_torch
self.control_lora = LoRASpecialNetwork(
text_encoder=sd.text_encoder,
unet=sd.unet,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.linear_alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=self.network_config.conv,
conv_alpha=self.network_config.conv_alpha,
is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
is_v2=self.model_config.is_v2,
is_v3=self.model_config.is_v3,
is_pixart=self.model_config.is_pixart,
is_auraflow=self.model_config.is_auraflow,
is_flux=self.model_config.is_flux,
is_lumina2=self.model_config.is_lumina2,
is_ssd=self.model_config.is_ssd,
is_vega=self.model_config.is_vega,
dropout=self.network_config.dropout,
use_text_encoder_1=self.model_config.use_text_encoder_1,
use_text_encoder_2=self.model_config.use_text_encoder_2,
use_bias=False,
is_lorm=False,
network_config=self.network_config,
network_type=self.network_config.type,
transformer_only=self.network_config.transformer_only,
is_transformer=sd.is_transformer,
base_model=sd,
**network_kwargs
)
self.control_lora.force_to(self.device_torch, dtype=torch.float32)
self.control_lora._update_torch_multiplier()
self.control_lora.apply_to(
sd.text_encoder,
sd.unet,
self.train_config.train_text_encoder,
self.train_config.train_unet
)
self.control_lora.can_merge_in = False
self.control_lora.prepare_grad_etc(sd.text_encoder, sd.unet)
if self.train_config.gradient_checkpointing:
self.control_lora.enable_gradient_checkpointing()
self.x_embedder = ImgEmbedder.from_model(sd.unet, self)
self.x_embedder.to(self.device_torch)
def get_params(self):
# LyCORIS doesnt have default_lr
config = {
'text_encoder_lr': self.train_config.lr,
'unet_lr': self.train_config.lr,
}
sig = inspect.signature(self.control_lora.prepare_optimizer_params)
if 'default_lr' in sig.parameters:
config['default_lr'] = self.train_config.lr
if 'learning_rate' in sig.parameters:
config['learning_rate'] = self.train_config.lr
params_net = self.control_lora.prepare_optimizer_params(
**config
)
# we want only tensors here
params = []
for p in params_net:
if isinstance(p, dict):
params += p["params"]
elif isinstance(p, torch.Tensor):
params.append(p)
elif isinstance(p, list):
params += p
params += list(self.x_embedder.parameters())
# we need to be able to yield from the list like yield from params
return params
def load_weights(self, state_dict, strict=True):
lora_sd = {}
img_embedder_sd = {}
for key, value in state_dict.items():
if "x_embedder" in key:
new_key = key.replace("transformer.x_embedder.", "")
img_embedder_sd[new_key] = value
else:
lora_sd[key] = value
# todo process state dict before loading
self.control_lora.load_weights(lora_sd)
self.x_embedder.load_state_dict(img_embedder_sd, strict=strict)
def get_state_dict(self):
lora_sd = self.control_lora.get_state_dict(dtype=torch.float32)
# todo make sure we match loras elseware.
img_embedder_sd = self.x_embedder.state_dict()
for key, value in img_embedder_sd.items():
lora_sd[f"transformer.x_embedder.{key}"] = value
return lora_sd
@property
def is_active(self):
return self.adapter_ref().is_active

View File

@@ -491,13 +491,8 @@ class ToolkitNetworkMixin:
keymap = new_keymap
return keymap
def save_weights(
self: Network,
file, dtype=torch.float16,
metadata=None,
extra_state_dict: Optional[OrderedDict] = None
):
def get_state_dict(self: Network, extra_state_dict=None, dtype=torch.float16):
keymap = self.get_keymap()
save_keymap = {}
@@ -506,9 +501,6 @@ class ToolkitNetworkMixin:
# invert them
save_keymap[diffusers_key] = ldm_key
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
save_dict = OrderedDict()
@@ -556,10 +548,22 @@ class ToolkitNetworkMixin:
save_dict = new_save_dict
save_dict = self.base_model_ref().convert_lora_weights_before_save(save_dict)
return save_dict
def save_weights(
self: Network,
file, dtype=torch.float16,
metadata=None,
extra_state_dict: Optional[OrderedDict] = None
):
save_dict = self.get_state_dict(extra_state_dict=extra_state_dict, dtype=dtype)
if metadata is not None and len(metadata) == 0:
metadata = None
if metadata is None:
metadata = OrderedDict()
metadata = add_model_hash_to_meta(state_dict, metadata)
metadata = add_model_hash_to_meta(save_dict, metadata)
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(save_dict, file, metadata)

View File

@@ -49,7 +49,8 @@ from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, T2IAda
StableDiffusionXLImg2ImgPipeline, LCMScheduler, Transformer2DModel, AutoencoderTiny, ControlNetModel, \
StableDiffusionXLControlNetPipeline, StableDiffusionControlNetPipeline, StableDiffusion3Pipeline, \
StableDiffusion3Img2ImgPipeline, PixArtSigmaPipeline, AuraFlowPipeline, AuraFlowTransformer2DModel, FluxPipeline, \
FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, Lumina2Text2ImgPipeline
FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, Lumina2Text2ImgPipeline, \
FluxControlPipeline
from toolkit.models.lumina2 import Lumina2Transformer2DModel
from toolkit.models.flex2 import Flex2Pipeline
import diffusers
@@ -155,6 +156,7 @@ class StableDiffusion:
self.model_config = model_config
self.prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"
self.arch = model_config.arch
self.device_state = None
@@ -1239,6 +1241,10 @@ class StableDiffusion:
Pipe = FluxPipeline
if self.is_flex2:
Pipe = Flex2Pipeline
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
# see if it is a control lora
if self.adapter.control_lora is not None:
Pipe = FluxControlPipeline
pipeline = Pipe(
vae=self.vae,
@@ -1358,6 +1364,9 @@ class StableDiffusion:
validation_image = validation_image.resize((gen_config.width, gen_config.height))
extra['image'] = validation_image
extra['controlnet_conditioning_scale'] = gen_config.adapter_conditioning_scale
if isinstance(self.adapter, CustomAdapter) and self.adapter.control_lora is not None:
validation_image = validation_image.resize((gen_config.width, gen_config.height))
extra['control_image'] = validation_image
if isinstance(self.adapter, IPAdapter) or isinstance(self.adapter, ClipVisionAdapter):
transform = transforms.Compose([
transforms.ToTensor(),
@@ -2136,7 +2145,8 @@ class StableDiffusion:
w=latent_model_input.shape[3] // 2,
ph=2,
pw=2,
c=latent_model_input.shape[1],
# c=latent_model_input.shape[1],
c=self.vae.config.latent_channels
)
if bypass_guidance_embedding: