Added experimental concept replacer, replicate converter, bucket maker, and other goodies

This commit is contained in:
Jaret Burkett
2023-09-06 18:50:32 -06:00
parent f84500159c
commit 436bf0c6a3
8 changed files with 517 additions and 561 deletions

View File

@@ -0,0 +1,159 @@
import random
from collections import OrderedDict
from torch.utils.data import DataLoader
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds
from toolkit.stable_diffusion_model import StableDiffusion, BlankNetwork
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
import torch
from jobs.process import BaseSDTrainProcess
def flush():
torch.cuda.empty_cache()
gc.collect()
class ConceptReplacementConfig:
def __init__(self, **kwargs):
self.concept: str = kwargs.get('concept', '')
self.replacement: str = kwargs.get('replacement', '')
class ConceptReplacer(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
replacement_list = self.config.get('replacements', [])
self.replacement_list = [ConceptReplacementConfig(**x) for x in replacement_list]
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.sd.vae.eval()
self.sd.vae.to(self.device_torch)
# textual inversion
if self.embedding is not None:
# keep original embeddings as reference
self.orig_embeds_params = self.sd.text_encoder.get_input_embeddings().weight.data.clone()
# set text encoder to train. Not sure if this is necessary but diffusers example did it
self.sd.text_encoder.train()
def hook_train_loop(self, batch):
with torch.no_grad():
dtype = get_torch_dtype(self.train_config.dtype)
noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch)
network_weight_list = batch.get_network_weight_list()
# have a blank network so we can wrap it in a context and set multipliers without checking every time
if self.network is not None:
network = self.network
else:
network = BlankNetwork()
batch_replacement_list = []
# get a random replacement for each prompt
for prompt in conditioned_prompts:
replacement = random.choice(self.replacement_list)
batch_replacement_list.append(replacement)
# build out prompts
concept_prompts = []
replacement_prompts = []
for idx, replacement in enumerate(batch_replacement_list):
prompt = conditioned_prompts[idx]
# insert shuffled concept at beginning and end of prompt
shuffled_concept = [x.strip() for x in replacement.concept.split(',')]
random.shuffle(shuffled_concept)
shuffled_concept = ', '.join(shuffled_concept)
concept_prompts.append(f"{shuffled_concept}, {prompt}, {shuffled_concept}")
# insert replacement at beginning and end of prompt
shuffled_replacement = [x.strip() for x in replacement.replacement.split(',')]
random.shuffle(shuffled_replacement)
shuffled_replacement = ', '.join(shuffled_replacement)
replacement_prompts.append(f"{shuffled_replacement}, {prompt}, {shuffled_replacement}")
# predict the replacement without network
conditional_embeds = self.sd.encode_prompt(replacement_prompts).to(self.device_torch, dtype=dtype)
replacement_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
timestep=timesteps,
guidance_scale=1.0,
)
del conditional_embeds
replacement_pred = replacement_pred.detach()
self.optimizer.zero_grad()
flush()
# text encoding
grad_on_text_encoder = False
if self.train_config.train_text_encoder:
grad_on_text_encoder = True
if self.embedding:
grad_on_text_encoder = True
# set the weights
network.multiplier = network_weight_list
# activate network if it exits
with network:
with torch.set_grad_enabled(grad_on_text_encoder):
# embed the prompts
conditional_embeds = self.sd.encode_prompt(concept_prompts).to(self.device_torch, dtype=dtype)
if not grad_on_text_encoder:
# detach the embeddings
conditional_embeds = conditional_embeds.detach()
self.optimizer.zero_grad()
flush()
noise_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
timestep=timesteps,
guidance_scale=1.0,
)
loss = torch.nn.functional.mse_loss(noise_pred.float(), replacement_pred.float(), reduction="none")
loss = loss.mean([1, 2, 3])
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.min_snr_gamma)
loss = loss.mean()
# back propagate loss to free ram
loss.backward()
flush()
# apply gradients
self.optimizer.step()
self.optimizer.zero_grad()
self.lr_scheduler.step()
if self.embedding is not None:
# Let's make sure we don't update any embedding weights besides the newly added token
index_no_updates = torch.ones((len(self.sd.tokenizer),), dtype=torch.bool)
index_no_updates[
min(self.embedding.placeholder_token_ids): max(self.embedding.placeholder_token_ids) + 1] = False
with torch.no_grad():
self.sd.text_encoder.get_input_embeddings().weight[
index_no_updates
] = self.orig_embeds_params[index_no_updates]
loss_dict = OrderedDict(
{'loss': loss.item()}
)
# reset network multiplier
network.multiplier = 1.0
return loss_dict

View File

@@ -0,0 +1,26 @@
# This is an example extension for custom training. It is great for experimenting with new ideas.
from toolkit.extension import Extension
# This is for generic training (LoRA, Dreambooth, FineTuning)
class ConceptReplacerExtension(Extension):
# uid must be unique, it is how the extension is identified
uid = "concept_replacer"
# name is the name of the extension for printing
name = "Concept Replacer"
# This is where your process class is loaded
# keep your imports in here so they don't slow down the rest of the program
@classmethod
def get_process(cls):
# import your process class here so it is only loaded when needed and return it
from .ConceptReplacer import ConceptReplacer
return ConceptReplacer
AI_TOOLKIT_EXTENSIONS = [
# you can put a list of extensions here
ConceptReplacerExtension,
]

View File

@@ -0,0 +1,91 @@
---
job: extension
config:
name: test_v1
process:
- type: 'textual_inversion_trainer'
training_folder: "out/TI"
device: cuda:0
# for tensorboard logging
log_dir: "out/.tensorboard"
embedding:
trigger: "your_trigger_here"
tokens: 12
init_words: "man with short brown hair"
save_format: "safetensors" # 'safetensors' or 'pt'
save:
dtype: float16 # precision to save
save_every: 100 # save every this many steps
max_step_saves_to_keep: 5 # only affects step counts
datasets:
- folder_path: "/path/to/dataset"
caption_ext: "txt"
default_caption: "[trigger]"
buckets: true
resolution: 512
train:
noise_scheduler: "ddpm" # or "ddpm", "lms", "euler_a"
steps: 3000
weight_jitter: 0.0
lr: 5e-5
train_unet: false
gradient_checkpointing: true
train_text_encoder: false
optimizer: "adamw"
# optimizer: "prodigy"
optimizer_params:
weight_decay: 1e-2
lr_scheduler: "constant"
max_denoising_steps: 1000
batch_size: 4
dtype: bf16
xformers: true
min_snr_gamma: 5.0
# skip_first_sample: true
noise_offset: 0.0 # not needed for this
model:
# objective reality v2
name_or_path: "https://civitai.com/models/128453?modelVersionId=142465"
is_v2: false # for v2 models
is_xl: false # for SDXL models
is_v_pred: false # for v-prediction models (most v2 models)
sample:
sampler: "ddpm" # must match train.noise_scheduler
sample_every: 100 # sample every this many steps
width: 512
height: 512
prompts:
- "photo of [trigger] laughing"
- "photo of [trigger] smiling"
- "[trigger] close up"
- "dark scene [trigger] frozen"
- "[trigger] nighttime"
- "a painting of [trigger]"
- "a drawing of [trigger]"
- "a cartoon of [trigger]"
- "[trigger] pixar style"
- "[trigger] costume"
neg: ""
seed: 42
walk_seed: false
guidance_scale: 7
sample_steps: 20
network_multiplier: 1.0
logging:
log_every: 10 # log every this many steps
use_wandb: false # not supported yet
verbose: false
# You can put any information you want here, and it will be saved in the model.
# The below is an example, but you can put your grocery list in it if you want.
# It is saved in the model so be aware of that. The software will include this
# plus some other information for you automatically
meta:
# [name] gets replaced with the name above
name: "[name]"
# version: '1.0'
# creator:
# name: Your Name
# email: your@gmail.com
# website: https://your.website

128
scripts/convert_cog.py Normal file
View File

@@ -0,0 +1,128 @@
import json
from collections import OrderedDict
import os
import torch
from safetensors import safe_open
from safetensors.torch import save_file
device = torch.device('cpu')
# [diffusers] -> kohya
embedding_mapping = {
'text_encoders_0': 'clip_l',
'text_encoders_1': 'clip_g'
}
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
KEYMAP_ROOT = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps')
sdxl_keymap_path = os.path.join(KEYMAP_ROOT, 'stable_diffusion_locon_sdxl.json')
# load keymap
with open(sdxl_keymap_path, 'r') as f:
ldm_diffusers_keymap = json.load(f)['ldm_diffusers_keymap']
# invert the item / key pairs
diffusers_ldm_keymap = {v: k for k, v in ldm_diffusers_keymap.items()}
def get_ldm_key(diffuser_key):
diffuser_key = f"lora_unet_{diffuser_key.replace('.', '_')}"
diffuser_key = diffuser_key.replace('_lora_down_weight', '.lora_down.weight')
diffuser_key = diffuser_key.replace('_lora_up_weight', '.lora_up.weight')
diffuser_key = diffuser_key.replace('_alpha', '.alpha')
diffuser_key = diffuser_key.replace('_processor_to_', '_to_')
diffuser_key = diffuser_key.replace('_to_out.', '_to_out_0.')
if diffuser_key in diffusers_ldm_keymap:
return diffusers_ldm_keymap[diffuser_key]
else:
raise KeyError(f"Key {diffuser_key} not found in keymap")
def convert_cog(lora_path, embedding_path):
embedding_state_dict = OrderedDict()
lora_state_dict = OrderedDict()
# # normal dict
# normal_dict = OrderedDict()
# example_path = "/mnt/Models/stable-diffusion/models/LoRA/sdxl/LogoRedmond_LogoRedAF.safetensors"
# with safe_open(example_path, framework="pt", device='cpu') as f:
# keys = list(f.keys())
# for key in keys:
# normal_dict[key] = f.get_tensor(key)
with safe_open(embedding_path, framework="pt", device='cpu') as f:
keys = list(f.keys())
for key in keys:
new_key = embedding_mapping[key]
embedding_state_dict[new_key] = f.get_tensor(key)
with safe_open(lora_path, framework="pt", device='cpu') as f:
keys = list(f.keys())
lora_rank = None
# get the lora dim first. Check first 3 linear layers just to be safe
for key in keys:
new_key = get_ldm_key(key)
tensor = f.get_tensor(key)
num_checked = 0
if len(tensor.shape) == 2:
this_dim = min(tensor.shape)
if lora_rank is None:
lora_rank = this_dim
elif lora_rank != this_dim:
raise ValueError(f"lora rank is not consistent, got {tensor.shape}")
else:
num_checked += 1
if num_checked >= 3:
break
for key in keys:
new_key = get_ldm_key(key)
tensor = f.get_tensor(key)
if new_key.endswith('.lora_down.weight'):
alpha_key = new_key.replace('.lora_down.weight', '.alpha')
# diffusers does not have alpha, they usa an alpha multiplier of 1 which is a tensor weight of the dims
# assume first smallest dim is the lora rank if shape is 2
lora_state_dict[alpha_key] = torch.ones(1).to(tensor.device, tensor.dtype) * lora_rank
lora_state_dict[new_key] = tensor
return lora_state_dict, embedding_state_dict
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'lora_path',
type=str,
help='Path to lora file'
)
parser.add_argument(
'embedding_path',
type=str,
help='Path to embedding file'
)
parser.add_argument(
'--lora_output',
type=str,
default="lora_output",
)
parser.add_argument(
'--embedding_output',
type=str,
default="embedding_output",
)
args = parser.parse_args()
lora_state_dict, embedding_state_dict = convert_cog(args.lora_path, args.embedding_path)
# save them
save_file(lora_state_dict, args.lora_output)
save_file(embedding_state_dict, args.embedding_output)
print(f"Saved lora to {args.lora_output}")
print(f"Saved embedding to {args.embedding_output}")

View File

@@ -1,547 +0,0 @@
import gc
import time
import argparse
import itertools
import math
import os
from multiprocessing import Value
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import custom_tools.train_tools as train_tools
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
get_weighted_text_embeddings,
prepare_scheduler_for_custom_training,
pyramid_noise_like,
apply_noise_offset,
scale_v_prediction_loss_like_noise_prediction,
)
# perlin_noise,
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
SD_SCRIPTS_ROOT = os.path.join(PROJECT_ROOT, "repositories", "sd-scripts")
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, False)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True))
if args.dataset_config is not None:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
if args.no_token_padding:
train_dataset_group.disable_token_padding()
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# replace captions with names
if args.name_replace is not None:
print(f"Replacing captions [name] with '{args.name_replace}'")
train_dataset_group = train_tools.replace_filewords_in_dataset_group(
train_dataset_group, args
)
# acceleratorを準備する
print("prepare accelerator")
if args.gradient_accumulation_steps > 1:
print(
f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong"
)
print(
f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデルU-NetおよびText Encoderの学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です"
)
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
accelerator.wait_for_everyone()
# 学習を準備する:モデルを適切な状態にする
train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0
unet.requires_grad_(True) # 念のため追加
text_encoder.requires_grad_(train_text_encoder)
if not train_text_encoder:
print("Text Encoder is not trained.")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
if train_text_encoder:
trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters())
else:
trainable_params = unet.parameters()
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collater,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
if args.stop_text_encoder_training is None:
args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
# lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
# transform DDP after prepare
text_encoder, unet = train_util.transform_if_model_is_DDP(text_encoder, unet)
if not train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth" if args.log_tracker_name is None else args.log_tracker_name)
if args.sample_first or args.sample_only:
# Do initial sample before starting training
train_tools.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer,
text_encoder, unet, force_sample=True)
if args.sample_only:
return
loss_list = []
loss_total = 0.0
for epoch in range(num_train_epochs):
print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
# 指定したステップ数までText Encoderを学習するepoch最初の状態
unet.train()
# train==True is required to enable gradient_checkpointing
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
# 指定したステップ数でText Encoderの学習を止める
if global_step == args.stop_text_encoder_training:
print(f"stop text encoder training at step {global_step}")
if not args.gradient_checkpointing:
text_encoder.train(False)
text_encoder.requires_grad_(False)
with accelerator.accumulate(unet):
with torch.no_grad():
# latentに変換
if cache_latents:
latents = batch["latents"].to(accelerator.device)
else:
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
# Sample noise that we'll add to the latents
if args.train_noise_seed is not None:
torch.manual_seed(args.train_noise_seed)
torch.cuda.manual_seed(args.train_noise_seed)
# make same seed for each item in the batch by stacking them
single_noise = torch.randn_like(latents[0])
noise = torch.stack([single_noise for _ in range(b_size)])
noise = noise.to(latents.device)
elif args.seed_lock:
noise = train_tools.get_noise_from_latents(latents)
else:
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
elif args.multires_noise_iterations:
noise = pyramid_noise_like(noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount)
# elif args.perlin_noise:
# noise = perlin_noise(noise, latents.device, args.perlin_noise) # only shape of noise is used currently
# Get the text embedding for conditioning
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
if args.weighted_captions:
encoder_hidden_states = get_weighted_text_embeddings(
tokenizer,
text_encoder,
batch["captions"],
accelerator.device,
args.max_token_length // 75 if args.max_token_length else 1,
clip_skip=args.clip_skip,
)
else:
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
if train_text_encoder:
params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters())
else:
params_to_clip = unet.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
False,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): # tracking d*lr value
logs["lr/d*lr"] = (
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
)
accelerator.log(logs, step=global_step)
if epoch == 0:
loss_list.append(current_loss)
else:
loss_total -= loss_list[step]
loss_list[step] = current_loss
loss_total += current_loss
avr_loss = loss_total / len(loss_list)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(loss_list)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if accelerator.is_main_process:
# checking for saving is in util
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
True,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state and is_main_process:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_train_end(
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
)
print("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, False, True)
train_util.add_training_arguments(parser, True)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument(
"--no_token_padding",
action="store_true",
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にするDiffusers版DreamBoothと同じ動作",
)
parser.add_argument(
"--stop_text_encoder_training",
type=int,
default=None,
help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない",
)
parser.add_argument(
"--sample_first",
action="store_true",
help="Sample first interval before training",
default=False
)
parser.add_argument(
"--name_replace",
type=str,
help="Replaces [name] in prompts. Used is sampling, training, and regs",
default=None
)
parser.add_argument(
"--train_noise_seed",
type=int,
help="Use custom seed for training noise",
default=None
)
parser.add_argument(
"--sample_only",
action="store_true",
help="Only generate samples. Used for generating training data with specific seeds to alter during training",
default=False
)
parser.add_argument(
"--seed_lock",
action="store_true",
help="Locks the seed to the latent images so the same latent will always have the same noise",
default=False
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)

110
toolkit/buckets.py Normal file
View File

@@ -0,0 +1,110 @@
from typing import Type, List, Union
BucketResolution = Type[{"width": int, "height": int}]
# resolutions SDXL was trained on with a 1024x1024 base resolution
resolutions_1024: List[BucketResolution] = [
# SDXL Base resolution
{"width": 1024, "height": 1024},
# SDXL Resolutions, widescreen
{"width": 2048, "height": 512},
{"width": 1984, "height": 512},
{"width": 1920, "height": 512},
{"width": 1856, "height": 512},
{"width": 1792, "height": 576},
{"width": 1728, "height": 576},
{"width": 1664, "height": 576},
{"width": 1600, "height": 640},
{"width": 1536, "height": 640},
{"width": 1472, "height": 704},
{"width": 1408, "height": 704},
{"width": 1344, "height": 704},
{"width": 1344, "height": 768},
{"width": 1280, "height": 768},
{"width": 1216, "height": 832},
{"width": 1152, "height": 832},
{"width": 1152, "height": 896},
{"width": 1088, "height": 896},
{"width": 1088, "height": 960},
{"width": 1024, "height": 960},
# SDXL Resolutions, portrait
{"width": 960, "height": 1024},
{"width": 960, "height": 1088},
{"width": 896, "height": 1088},
{"width": 896, "height": 1152},
{"width": 832, "height": 1152},
{"width": 832, "height": 1216},
{"width": 768, "height": 1280},
{"width": 768, "height": 1344},
{"width": 704, "height": 1408},
{"width": 704, "height": 1472},
{"width": 640, "height": 1536},
{"width": 640, "height": 1600},
{"width": 576, "height": 1664},
{"width": 576, "height": 1728},
{"width": 576, "height": 1792},
{"width": 512, "height": 1856},
{"width": 512, "height": 1920},
{"width": 512, "height": 1984},
{"width": 512, "height": 2048},
]
def get_bucket_sizes(resolution: int = 512, divisibility: int = 8) -> List[BucketResolution]:
# determine scaler form 1024 to resolution
scaler = resolution / 1024
bucket_size_list = []
for bucket in resolutions_1024:
# must be divisible by 8
width = int(bucket["width"] * scaler)
height = int(bucket["height"] * scaler)
if width % divisibility != 0:
width = width - (width % divisibility)
if height % divisibility != 0:
height = height - (height % divisibility)
bucket_size_list.append({"width": width, "height": height})
return bucket_size_list
def get_bucket_for_image_size(
width: int,
height: int,
bucket_size_list: List[BucketResolution] = None,
resolution: Union[int, None] = None
) -> BucketResolution:
if bucket_size_list is None and resolution is None:
raise ValueError("Must provide either bucket_size_list or resolution")
if bucket_size_list is None:
bucket_size_list = get_bucket_sizes(resolution=resolution)
# Check for exact match first
for bucket in bucket_size_list:
if bucket["width"] == width and bucket["height"] == height:
return bucket
# If exact match not found, find the closest bucket
closest_bucket = None
min_removed_pixels = float("inf")
for bucket in bucket_size_list:
scale_w = bucket["width"] / width
scale_h = bucket["height"] / height
# To minimize pixels, we use the larger scale factor to minimize the amount that has to be cropped.
scale = max(scale_w, scale_h)
new_width = int(width * scale)
new_height = int(height * scale)
removed_pixels = (new_width - bucket["width"]) * new_height + (new_height - bucket["height"]) * new_width
if removed_pixels < min_removed_pixels:
min_removed_pixels = removed_pixels
closest_bucket = bucket
if closest_bucket is None:
raise ValueError("No suitable bucket found")
return closest_bucket

View File

@@ -52,7 +52,7 @@ class LoRAModule(ToolkitModuleMixin, torch.nn.Module):
self.lora_name = lora_name
self.scalar = torch.tensor(1.0)
if org_module.__class__.__name__ == "Conv2d":
if org_module.__class__.__name__ in CONV_MODULES:
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
@@ -66,7 +66,7 @@ class LoRAModule(ToolkitModuleMixin, torch.nn.Module):
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
if org_module.__class__.__name__ in CONV_MODULES:
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding

View File

@@ -134,18 +134,7 @@ class StableDiffusion:
# TODO handle other schedulers
# sch = KDPM2DiscreteScheduler
if self.noise_scheduler is None:
sch = DDPMScheduler
# do our own scheduler
prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"
scheduler = sch(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.0120,
beta_schedule="scaled_linear",
clip_sample=False,
prediction_type=prediction_type,
steps_offset=0
)
scheduler = get_sampler('ddpm')
self.noise_scheduler = scheduler
# move the betas alphas and alphas_cumprod to device. Sometimed they get stuck on cpu, not sure why