Made a very basic vae trainer.

This commit is contained in:
Jaret Burkett
2023-07-17 19:03:50 -06:00
parent 78b59c5e99
commit 439310e4dc
11 changed files with 410 additions and 89 deletions

3
.gitmodules vendored
View File

@@ -1,3 +1,6 @@
[submodule "repositories/sd-scripts"]
path = repositories/sd-scripts
url = https://github.com/kohya-ss/sd-scripts.git
[submodule "repositories/leco"]
path = repositories/leco
url = https://github.com/p1atdev/LECO

View File

@@ -1,85 +1,40 @@
# from jobs import BaseJob
# from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
# from collections import OrderedDict
# from typing import List
# from jobs.process import BaseExtractProcess, TrainFineTuneProcess
# import gc
# import time
# import argparse
# import itertools
# import math
# import os
# from multiprocessing import Value
#
# from tqdm import tqdm
# import torch
# from accelerate.utils import set_seed
# from accelerate import Accelerator
# import diffusers
# from diffusers import DDPMScheduler
#
# from toolkit.paths import SD_SCRIPTS_ROOT
#
# import sys
#
# sys.path.append(SD_SCRIPTS_ROOT)
#
# import library.train_util as train_util
# import library.config_util as config_util
# from library.config_util import (
# ConfigSanitizer,
# BlueprintGenerator,
# )
# import toolkit.train_tools as train_tools
# import library.custom_train_functions as custom_train_functions
# from library.custom_train_functions import (
# apply_snr_weight,
# get_weighted_text_embeddings,
# prepare_scheduler_for_custom_training,
# pyramid_noise_like,
# apply_noise_offset,
# scale_v_prediction_loss_like_noise_prediction,
# )
#
# process_dict = {
# 'fine_tine': 'TrainFineTuneProcess'
# }
#
#
# class TrainJob(BaseJob):
# process: List[BaseExtractProcess]
#
# def __init__(self, config: OrderedDict):
# super().__init__(config)
# self.base_model_path = self.get_conf('base_model', required=True)
# self.base_model = None
# self.training_folder = self.get_conf('training_folder', required=True)
# self.is_v2 = self.get_conf('is_v2', False)
# self.device = self.get_conf('device', 'cpu')
# self.gradient_accumulation_steps = self.get_conf('gradient_accumulation_steps', 1)
# self.mixed_precision = self.get_conf('mixed_precision', False) # fp16
# self.logging_dir = self.get_conf('logging_dir', None)
#
# # loads the processes from the config
# self.load_processes(process_dict)
#
# # setup accelerator
# self.accelerator = Accelerator(
# gradient_accumulation_steps=self.gradient_accumulation_steps,
# mixed_precision=self.mixed_precision,
# log_with=None if self.logging_dir is None else 'tensorboard',
# logging_dir=self.logging_dir,
# )
#
# def run(self):
# super().run()
# # load models
# print(f"Loading base model for training")
# print(f" - Loading base model: {self.base_model_path}")
# self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path)
#
# print("")
# print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
#
# for process in self.process:
# process.run()
from jobs import BaseJob
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
from collections import OrderedDict
from typing import List
from jobs.process import BaseExtractProcess, TrainFineTuneProcess
from toolkit.paths import REPOS_ROOT
import sys
sys.path.append(REPOS_ROOT)
process_dict = {
'vae': 'TrainVAEProcess',
'finetune': 'TrainFineTuneProcess'
}
class TrainJob(BaseJob):
process: List[BaseExtractProcess]
def __init__(self, config: OrderedDict):
super().__init__(config)
self.training_folder = self.get_conf('training_folder', required=True)
self.is_v2 = self.get_conf('is_v2', False)
self.device = self.get_conf('device', 'cpu')
self.gradient_accumulation_steps = self.get_conf('gradient_accumulation_steps', 1)
self.mixed_precision = self.get_conf('mixed_precision', False) # fp16
self.logging_dir = self.get_conf('logging_dir', None)
# loads the processes from the config
self.load_processes(process_dict)
def run(self):
super().run()
print("")
print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
for process in self.process:
process.run()

View File

@@ -1,2 +1,3 @@
from .BaseJob import BaseJob
from .ExtractJob import ExtractJob
from .TrainJob import TrainJob

View File

@@ -13,9 +13,6 @@ class BaseTrainProcess(BaseProcess):
config: OrderedDict
):
super().__init__(process_id, job, config)
self.process_id = process_id
self.job = job
self.config = config
def run(self):
# implement in child class

View File

@@ -0,0 +1,291 @@
import copy
import os
import time
from collections import OrderedDict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file
from torch.utils.data import DataLoader, ConcatDataset
import torch
from torch import nn
from torchvision.transforms import transforms
from jobs.process import BaseTrainProcess
from toolkit.kohya_model_util import load_vae
from toolkit.data_loader import ImageDataset
from toolkit.metadata import get_meta_for_safetensors
from toolkit.train_tools import get_torch_dtype
from tqdm import tqdm
import time
import numpy as np
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
INVERSE_IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.Normalize(
mean=[-0.5/0.5],
std=[1/0.5]
),
transforms.ToPILImage(),
]
)
class TrainVAEProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.data_loader = None
self.vae = None
self.device = self.get_conf('device', self.job.device)
self.vae_path = self.get_conf('vae_path', required=True)
self.datasets_objects = self.get_conf('datasets', required=True)
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
self.batch_size = self.get_conf('batch_size', 1)
self.resolution = self.get_conf('resolution', 256)
self.learning_rate = self.get_conf('learning_rate', 1e-4)
self.sample_every = self.get_conf('sample_every', None)
self.epochs = self.get_conf('epochs', None)
self.max_steps = self.get_conf('max_steps', None)
self.save_every = self.get_conf('save_every', None)
self.dtype = self.get_conf('dtype', 'float32')
self.sample_sources = self.get_conf('sample_sources', None)
self.torch_dtype = get_torch_dtype(self.dtype)
self.save_root = os.path.join(self.training_folder, self.job.name)
if self.sample_every is not None and self.sample_sources is None:
raise ValueError('sample_every is specified but sample_sources is not')
if self.epochs is None and self.max_steps is None:
raise ValueError('epochs or max_steps must be specified')
self.data_loaders = []
datasets = []
# check datasets
assert isinstance(self.datasets_objects, list)
for dataset in self.datasets_objects:
if 'path' not in dataset:
raise ValueError('dataset must have a path')
# check if is dir
if not os.path.isdir(dataset['path']):
raise ValueError(f"dataset path does is not a directory: {dataset['path']}")
# make training folder
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
def load_datasets(self):
if self.data_loader is None:
print(f"Loading datasets")
datasets = []
for dataset in self.datasets_objects:
print(f" - Dataset: {dataset['path']}")
ds = copy.copy(dataset)
ds['resolution'] = self.resolution
image_dataset = ImageDataset(ds)
datasets.append(image_dataset)
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.batch_size,
shuffle=True
)
def get_loss(self, pred, target):
loss_fn = nn.MSELoss()
loss = loss_fn(pred, target)
return loss
def get_elbo_loss(self, pred, target, mu, log_var):
# ELBO (Evidence Lower BOund) loss, aka variational lower bound
reconstruction_loss = nn.MSELoss(reduction='sum')
BCE = reconstruction_loss(pred, target) # reconstruction loss
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) # KL divergence
return BCE + KLD
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
filename = f'{self.job.name}{step_num}.safetensors'
save_path = os.path.join(self.save_root, filename)
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
state_dict = self.vae.state_dict()
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(torch.float32)
state_dict[key] = v
# having issues with meta
save_file(state_dict, os.path.join(self.save_root, filename), save_meta)
print(f"Saved to {os.path.join(self.save_root, filename)}")
def sample(self, step=None):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
with torch.no_grad():
self.vae.encoder.eval()
self.vae.decoder.eval()
for i, img_url in enumerate(self.sample_sources):
img = exif_transpose(Image.open(img_url))
img = img.convert('RGB')
# crop if not square
if img.width != img.height:
min_dim = min(img.width, img.height)
img = img.crop((0, 0, min_dim, min_dim))
# resize
img = img.resize((self.resolution, self.resolution))
input_img = img
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype)
decoded = self.vae(img).sample.squeeze(0)
decoded = INVERSE_IMAGE_TRANSFORMS(decoded)
# stack input image and decoded image
input_img = input_img.resize((self.resolution, self.resolution))
decoded = decoded.resize((self.resolution, self.resolution))
output_img = Image.new('RGB', (self.resolution * 2, self.resolution))
output_img.paste(input_img, (0, 0))
output_img.paste(decoded, (self.resolution, 0))
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zeropad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
output_img.save(os.path.join(sample_folder, filename))
self.vae.decoder.train()
def run(self):
super().run()
self.load_datasets()
max_step_epochs = self.max_steps // len(self.data_loader)
num_epochs = self.epochs
if num_epochs is None or num_epochs > max_step_epochs:
num_epochs = max_step_epochs
max_epoch_steps = len(self.data_loader) * num_epochs
num_steps = self.max_steps
if num_steps is None or num_steps > max_epoch_steps:
num_steps = max_epoch_steps
print(f"Training VAE")
print(f" - Training folder: {self.training_folder}")
print(f" - Batch size: {self.batch_size}")
print(f" - Learning rate: {self.learning_rate}")
print(f" - Epochs: {num_epochs}")
print(f" - Max steps: {self.max_steps}")
# load vae
print(f"Loading VAE")
print(f" - Loading VAE: {self.vae_path}")
if self.vae is None:
self.vae = load_vae(self.vae_path, dtype=self.torch_dtype)
# set decoder to train
self.vae.to(self.device, dtype=self.torch_dtype)
self.vae.requires_grad_(False)
self.vae.eval()
self.vae.decoder.requires_grad_(True)
self.vae.decoder.train()
parameters = self.vae.decoder.parameters()
optimizer = torch.optim.Adam(parameters, lr=self.learning_rate)
# setup scheduler
# scheduler = lr_scheduler.ConstantLR
# todo allow other schedulers
scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer,
total_iters=num_steps,
factor=1,
verbose=False
)
# setup tqdm progress bar
progress_bar = tqdm(
total=num_steps,
desc='Training VAE',
leave=True
)
step = 0
# sample first
self.sample()
for epoch in range(num_epochs):
if step >= num_steps:
break
for batch in self.data_loader:
if step >= num_steps:
break
batch = batch.to(self.device, dtype=self.torch_dtype)
# forward pass
# with torch.no_grad():
dgd = self.vae.encode(batch).latent_dist
mu, logvar = dgd.mean, dgd.logvar
latents = dgd.sample()
latents.requires_grad_(True)
pred = self.vae.decode(latents).sample
loss = self.get_elbo_loss(pred, batch, mu, logvar)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# update progress bar
loss_value = loss.item()
# get exponent like 3.54e-4
loss_string = f"{loss_value:.2e}"
learning_rate = optimizer.param_groups[0]['lr']
progress_bar.set_postfix_str(f"LR: {learning_rate:.2e} Loss: {loss_string}")
progress_bar.set_description(f"E: {epoch} - S: {step} ")
progress_bar.update(1)
if step != 0:
if self.sample_every and step % self.sample_every == 0:
# print above the progress bar
print(f"Sampling at step {step}")
self.sample(step)
if self.save_every and step % self.save_every == 0:
# print above the progress bar
print(f"Saving at step {step}")
self.save(step)
step += 1
self.save()
pass

View File

@@ -3,4 +3,4 @@ from .ExtractLoconProcess import ExtractLoconProcess
from .ExtractLoraProcess import ExtractLoraProcess
from .BaseProcess import BaseProcess
from .BaseTrainProcess import BaseTrainProcess
from .TrainFineTuneProcess import TrainFineTuneProcess
from .TrainVAEProcess import TrainVAEProcess

1
repositories/leco Submodule

Submodule repositories/leco added at 9294adf402

View File

@@ -1,4 +1,5 @@
torch
torchvision
safetensors
diffusers
transformers

67
toolkit/data_loader.py Normal file
View File

@@ -0,0 +1,67 @@
import os
import random
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from torch.utils.data import Dataset
class ImageDataset(Dataset):
def __init__(self, config):
self.config = config
self.name = self.get_config('name', 'dataset')
self.path = self.get_config('path', required=True)
self.scale = self.get_config('scale', 1)
self.random_scale = self.get_config('random_scale', False)
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else self.get_config('random_crop', False)
self.resolution = self.get_config('resolution', 256)
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
# this might take a while
print(f" - Preprocessing image dimensions")
self.file_list = [file for file in self.file_list if
int(min(Image.open(file).size) * self.scale) >= self.resolution]
print(f" - Found {len(self.file_list)} images")
assert len(self.file_list) > 0, f"no images found in {self.path}"
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
img = exif_transpose(Image.open(img_path)).convert('RGB')
# Downscale the source image first
img = img.resize((int(img.size[0] * self.scale), int(img.size[1] * self.scale)), Image.BICUBIC)
if self.random_crop:
if self.random_scale:
scale_size = random.randint(int(img.size[0] * self.scale), self.resolution)
img = img.resize((scale_size, scale_size), Image.BICUBIC)
img = transforms.RandomCrop(self.resolution)(img)
else:
min_dimension = min(img.size)
img = transforms.CenterCrop(min_dimension)(img)
img = img.resize((self.resolution, self.resolution), Image.BICUBIC)
img = self.transform(img)
return img

View File

@@ -10,6 +10,10 @@ def get_job(config_path):
if job == 'extract':
from jobs import ExtractJob
return ExtractJob(config)
if job == 'train':
from jobs import TrainJob
return TrainJob(config)
# elif job == 'train':
# from jobs import TrainJob
# return TrainJob(config)

View File

@@ -3,3 +3,4 @@ import os
TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config')
SD_SCRIPTS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories", "sd-scripts")
REPOS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories")