mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Initial support for RamTorch. Still a WIP
This commit is contained in:
@@ -624,6 +624,15 @@ class ModelConfig:
|
||||
|
||||
self.arch: ModelArch = kwargs.get("arch", None)
|
||||
|
||||
# auto memory management, only for some models
|
||||
self.auto_memory = kwargs.get("auto_memory", False)
|
||||
if self.auto_memory and self.qtype == "qfloat8":
|
||||
print(f"Auto memory is not compatible with qfloat8, switching to float8 for model")
|
||||
self.qtype = "float8"
|
||||
if self.auto_memory and not self.qtype_te == "qfloat8":
|
||||
print(f"Auto memory is not compatible with qfloat8, switching to float8 for te")
|
||||
self.qtype_te = "float8"
|
||||
|
||||
# can be used to load the extras like text encoder or vae from here
|
||||
# only setup for some models but will prevent having to download the te for
|
||||
# 20 different model variants
|
||||
@@ -650,6 +659,7 @@ class ModelConfig:
|
||||
|
||||
if self.arch == "flex1":
|
||||
self.arch = "flux"
|
||||
|
||||
|
||||
# handle migrating to new model arch
|
||||
if self.arch is not None:
|
||||
|
||||
@@ -1,12 +1,92 @@
|
||||
from typing import TYPE_CHECKING
|
||||
import torch
|
||||
from .manager_modules import LinearLayerMemoryManager, ConvLayerMemoryManager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.models.base_model import BaseModel
|
||||
LINEAR_MODULES = [
|
||||
"Linear",
|
||||
"LoRACompatibleLinear",
|
||||
"QLinear",
|
||||
]
|
||||
CONV_MODULES = [
|
||||
"Conv2d",
|
||||
"LoRACompatibleConv",
|
||||
"QConv2d",
|
||||
]
|
||||
|
||||
UNMANAGED_MODULES = [
|
||||
"LayerNorm",
|
||||
"BatchNorm1d",
|
||||
"BatchNorm2d",
|
||||
"BatchNorm3d",
|
||||
"GroupNorm",
|
||||
"InstanceNorm1d",
|
||||
"InstanceNorm2d",
|
||||
"InstanceNorm3d",
|
||||
"Embedding",
|
||||
"EmbeddingBag",
|
||||
"RNNBase",
|
||||
"LSTM",
|
||||
"GRU",
|
||||
"RNN",
|
||||
]
|
||||
|
||||
UNMANAGED_MODULES_INCLUDES = ["RotaryEmbedding", "Norm"]
|
||||
|
||||
|
||||
class MemoryManager:
|
||||
def __init__(
|
||||
self,
|
||||
model: "BaseModel",
|
||||
module: torch.nn.Module,
|
||||
process_device: torch.device = torch.device("cpu"),
|
||||
):
|
||||
self.model: "BaseModel" = model
|
||||
self.module: torch.nn.Module = module
|
||||
self.process_device: torch.device = process_device
|
||||
self.unmanaged_modules: list[torch.nn.Module] = []
|
||||
|
||||
def memory_managed_to(self, *args, **kwargs):
|
||||
# first move all the unmanaged modules
|
||||
for module in self.unmanaged_modules:
|
||||
module.to(*args, **kwargs)
|
||||
# check for a dtype argument
|
||||
dtype = None
|
||||
if "dtype" in kwargs:
|
||||
dtype = kwargs["dtype"]
|
||||
elif len(args) > 0:
|
||||
for i, arg in enumerate(args):
|
||||
if isinstance(arg, torch.dtype):
|
||||
dtype = arg
|
||||
break
|
||||
if dtype is not None:
|
||||
return self.module._mm_to(dtype=dtype)
|
||||
return self.module
|
||||
|
||||
@classmethod
|
||||
def attach(cls, module: torch.nn.Module, device: torch.device):
|
||||
if hasattr(module, "_memory_manager"):
|
||||
# already attached
|
||||
return
|
||||
|
||||
module._memory_manager = cls(module, device)
|
||||
|
||||
# override the to method to handle memory management
|
||||
module._mm_to = module.to
|
||||
module.to = module._memory_manager.memory_managed_to
|
||||
|
||||
# attach to all modules
|
||||
for name, sub_module in module.named_modules():
|
||||
for child_name, child_module in sub_module.named_modules():
|
||||
if child_module.__class__.__name__ in LINEAR_MODULES:
|
||||
# linear
|
||||
LinearLayerMemoryManager.attach(
|
||||
child_module, module._memory_manager
|
||||
)
|
||||
elif child_module.__class__.__name__ in CONV_MODULES:
|
||||
# conv
|
||||
ConvLayerMemoryManager.attach(child_module, module._memory_manager)
|
||||
elif child_module.__class__.__name__ in UNMANAGED_MODULES or any(
|
||||
inc in child_module.__class__.__name__
|
||||
for inc in UNMANAGED_MODULES_INCLUDES
|
||||
):
|
||||
# unmanaged
|
||||
module._memory_manager.unmanaged_modules.append(child_module)
|
||||
else:
|
||||
continue
|
||||
|
||||
450
toolkit/memory_management/manager_modules.py
Normal file
450
toolkit/memory_management/manager_modules.py
Normal file
@@ -0,0 +1,450 @@
|
||||
"""
|
||||
This code was heavily inspired by the work of Lodestone-Rock, pretty much all credit goes
|
||||
to them. The original code can be found here:
|
||||
https://github.com/lodestone-rock/RamTorch/blob/main/ramtorch/modules/linear.py
|
||||
|
||||
I simply modified it to work with a memory management model and with AI Toolkit's models
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .manager import MemoryManager
|
||||
|
||||
# --- Per-device global state registry ---
|
||||
_DEVICE_STATE = {}
|
||||
|
||||
|
||||
def _get_device_state(device: torch.device):
|
||||
"""Get or initialize per-device state."""
|
||||
if isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
|
||||
# CPU path needs no CUDA state
|
||||
if device.type != "cuda":
|
||||
if device not in _DEVICE_STATE:
|
||||
_DEVICE_STATE[device] = {}
|
||||
return _DEVICE_STATE[device]
|
||||
|
||||
if device not in _DEVICE_STATE:
|
||||
with torch.cuda.device(device):
|
||||
_DEVICE_STATE[device] = {
|
||||
# streams & events
|
||||
"transfer_stream": torch.cuda.Stream(device=device),
|
||||
"transfer_grad_stream": torch.cuda.Stream(device=device),
|
||||
"transfer_forward_finished_event": torch.cuda.Event(),
|
||||
"compute_forward_start_event": torch.cuda.Event(),
|
||||
"transfer_backward_finished_event": torch.cuda.Event(),
|
||||
"transfer_weight_backward_finished_event": torch.cuda.Event(),
|
||||
"compute_backward_start_event": torch.cuda.Event(),
|
||||
"compute_backward_finished_event": torch.cuda.Event(),
|
||||
# ping-pong buffers
|
||||
"w_buffers": [None, None],
|
||||
"b_buffers": [None, None],
|
||||
"w_bwd_buffers": [None, None],
|
||||
# device-side staging for grads to be sent to CPU
|
||||
"w_grad_buffers": [None, None],
|
||||
"b_grad_buffers": [None, None],
|
||||
# clocks
|
||||
"forward_clk": 0,
|
||||
"backward_clk": 0,
|
||||
}
|
||||
return _DEVICE_STATE[device]
|
||||
|
||||
|
||||
def _ensure_cpu_pinned(t: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
||||
if t is None:
|
||||
return None
|
||||
if t.device.type != "cpu":
|
||||
t = t.to("cpu", copy=True)
|
||||
if torch.cuda.is_available():
|
||||
try:
|
||||
t = t.pin_memory()
|
||||
except RuntimeError:
|
||||
pass
|
||||
return t
|
||||
|
||||
|
||||
def _move_params_to_cpu_and_pin(module: nn.Module):
|
||||
"""Force parameters to CPU (+pinned) so we can 'bounce' them per forward/backward."""
|
||||
with torch.no_grad():
|
||||
if hasattr(module, "weight") and isinstance(module.weight, nn.Parameter):
|
||||
module.weight.data = _ensure_cpu_pinned(module.weight.data).detach()
|
||||
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
|
||||
if module.bias is not None:
|
||||
module.bias.data = _ensure_cpu_pinned(module.bias.data).detach()
|
||||
|
||||
|
||||
# ==========================
|
||||
# Autograd functions (CUDA)
|
||||
# ==========================
|
||||
|
||||
|
||||
class _BouncingLinearFn(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x, weight_cpu, bias_cpu, device: torch.device):
|
||||
if device.type != "cuda":
|
||||
out = F.linear(x.to("cpu"), weight_cpu, bias_cpu)
|
||||
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
|
||||
ctx.device = torch.device("cpu")
|
||||
return out.to(x.device)
|
||||
|
||||
state = _get_device_state(device)
|
||||
ts = state["transfer_stream"]
|
||||
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
|
||||
ev_tx_f = state["transfer_forward_finished_event"]
|
||||
ev_cu_s = state["compute_forward_start_event"]
|
||||
idx = state["forward_clk"]
|
||||
|
||||
with torch.cuda.stream(ts):
|
||||
ts.wait_event(ev_cu_s)
|
||||
w_bufs[idx] = weight_cpu.to(device, non_blocking=True)
|
||||
b_bufs[idx] = (
|
||||
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
|
||||
)
|
||||
state["forward_clk"] ^= 1
|
||||
ev_tx_f.record()
|
||||
|
||||
torch.cuda.current_stream().wait_event(ev_tx_f)
|
||||
ev_cu_s.record()
|
||||
out = F.linear(x, w_bufs[idx], b_bufs[idx])
|
||||
|
||||
ctx.save_for_backward(x, weight_cpu, bias_cpu)
|
||||
ctx.device = device
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
x, weight_cpu, bias_cpu = ctx.saved_tensors
|
||||
device = ctx.device
|
||||
|
||||
if device.type != "cuda":
|
||||
go_cpu = grad_out.to("cpu")
|
||||
x_cpu = x.to("cpu")
|
||||
grad_input = go_cpu @ weight_cpu
|
||||
grad_weight = go_cpu.flatten(0, -2).T @ x_cpu.flatten(0, -2)
|
||||
grad_bias = (
|
||||
go_cpu.sum(dim=tuple(range(go_cpu.ndim - 1)))
|
||||
if bias_cpu is not None
|
||||
else None
|
||||
)
|
||||
return grad_input.to(grad_out.device), grad_weight, grad_bias, None
|
||||
|
||||
state = _get_device_state(device)
|
||||
transfer_stream = state["transfer_stream"]
|
||||
transfer_grad_stream = state["transfer_grad_stream"]
|
||||
|
||||
w_bwd_buffers = state["w_bwd_buffers"]
|
||||
w_grad_buffers = state["w_grad_buffers"]
|
||||
b_grad_buffers = state["b_grad_buffers"]
|
||||
|
||||
ev_tx_b = state["transfer_backward_finished_event"]
|
||||
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
|
||||
ev_cu_b_start = state["compute_backward_start_event"]
|
||||
ev_cu_b_finish = state["compute_backward_finished_event"]
|
||||
|
||||
idx = state["backward_clk"]
|
||||
|
||||
# Stage weights onto device (transfer stream), ping-pong to avoid races
|
||||
with torch.cuda.stream(transfer_stream):
|
||||
transfer_stream.wait_event(ev_cu_b_start)
|
||||
w_bwd_buffers[idx] = weight_cpu.to(device, non_blocking=True)
|
||||
state["backward_clk"] ^= 1
|
||||
ev_tx_b.record()
|
||||
|
||||
# Compute stream waits for weights to arrive, then start compute
|
||||
torch.cuda.current_stream().wait_event(ev_tx_b)
|
||||
ev_cu_b_start.record()
|
||||
|
||||
# 1) Compute grad_input using the freshly transferred weights
|
||||
grad_input = grad_out @ w_bwd_buffers[idx]
|
||||
|
||||
# 2) Ensure previous grad-to-CPU transfer that used this slot finished
|
||||
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
|
||||
|
||||
# 3) Compute weight/bias grads on GPU into staging buffers
|
||||
w_grad_buffers[idx] = grad_out.flatten(0, -2).T @ x.flatten(0, -2)
|
||||
if bias_cpu is not None:
|
||||
reduce_dims = tuple(range(grad_out.ndim - 1))
|
||||
b_grad_buffers[idx] = grad_out.sum(dim=reduce_dims)
|
||||
|
||||
# Mark end of GPU compute
|
||||
ev_cu_b_finish.record()
|
||||
|
||||
# 4) Launch non-blocking H2D->CPU transfers on a separate grad stream (full-duplex)
|
||||
with torch.cuda.stream(transfer_grad_stream):
|
||||
transfer_grad_stream.wait_event(ev_cu_b_finish)
|
||||
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
|
||||
grad_bias = (
|
||||
b_grad_buffers[idx].to("cpu", non_blocking=True)
|
||||
if bias_cpu is not None
|
||||
else None
|
||||
)
|
||||
# signal that this slot's CPU transfer is complete (safe for next reuse)
|
||||
state["transfer_weight_backward_finished_event"].record()
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None
|
||||
|
||||
|
||||
class _BouncingConv2dFn(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx,
|
||||
x,
|
||||
weight_cpu,
|
||||
bias_cpu,
|
||||
device: torch.device,
|
||||
stride: Tuple[int, int],
|
||||
padding: Tuple[int, int],
|
||||
dilation: Tuple[int, int],
|
||||
groups: int,
|
||||
):
|
||||
if device.type != "cuda":
|
||||
out = F.conv2d(
|
||||
x.to("cpu"), weight_cpu, bias_cpu, stride, padding, dilation, groups
|
||||
)
|
||||
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
|
||||
ctx.meta = ("cpu", stride, padding, dilation, groups)
|
||||
return out.to(x.device)
|
||||
|
||||
state = _get_device_state(device)
|
||||
ts = state["transfer_stream"]
|
||||
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
|
||||
ev_tx_f = state["transfer_forward_finished_event"]
|
||||
ev_cu_s = state["compute_forward_start_event"]
|
||||
idx = state["forward_clk"]
|
||||
|
||||
with torch.cuda.stream(ts):
|
||||
ts.wait_event(ev_cu_s)
|
||||
w_bufs[idx] = weight_cpu.to(device, non_blocking=True)
|
||||
b_bufs[idx] = (
|
||||
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
|
||||
)
|
||||
state["forward_clk"] ^= 1
|
||||
ev_tx_f.record()
|
||||
|
||||
torch.cuda.current_stream().wait_event(ev_tx_f)
|
||||
ev_cu_s.record()
|
||||
out = F.conv2d(x, w_bufs[idx], b_bufs[idx], stride, padding, dilation, groups)
|
||||
|
||||
ctx.save_for_backward(x, weight_cpu, bias_cpu)
|
||||
ctx.meta = (device, stride, padding, dilation, groups)
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
x, weight_cpu, bias_cpu = ctx.saved_tensors
|
||||
meta = ctx.meta
|
||||
device, stride, padding, dilation, groups = meta
|
||||
|
||||
if (
|
||||
isinstance(device, torch.device) and device.type != "cuda"
|
||||
) or device == "cpu":
|
||||
# CPU grads
|
||||
go = grad_out.to("cpu")
|
||||
x_cpu = x.to("cpu")
|
||||
w_cpu = weight_cpu
|
||||
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
|
||||
|
||||
grad_input = conv2d_input(
|
||||
x_cpu.shape,
|
||||
w_cpu,
|
||||
go,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
)
|
||||
grad_weight = conv2d_weight(
|
||||
x_cpu,
|
||||
w_cpu.shape,
|
||||
go,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
)
|
||||
grad_bias = go.sum(dim=(0, 2, 3)) if bias_cpu is not None else None
|
||||
return (
|
||||
grad_input.to(grad_out.device),
|
||||
grad_weight,
|
||||
grad_bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
# CUDA path (full-duplex)
|
||||
state = _get_device_state(device)
|
||||
transfer_stream = state["transfer_stream"]
|
||||
transfer_grad_stream = state["transfer_grad_stream"]
|
||||
|
||||
# device-side buffers
|
||||
w_bwd_buffers = state["w_bwd_buffers"]
|
||||
w_grad_buffers = state["w_grad_buffers"]
|
||||
b_grad_buffers = state["b_grad_buffers"]
|
||||
|
||||
ev_tx_b = state["transfer_backward_finished_event"]
|
||||
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
|
||||
ev_cu_b_start = state["compute_backward_start_event"]
|
||||
ev_cu_b_finish = state["compute_backward_finished_event"]
|
||||
|
||||
idx = state["backward_clk"]
|
||||
|
||||
# Stage weights for input-grad compute
|
||||
with torch.cuda.stream(transfer_stream):
|
||||
transfer_stream.wait_event(ev_cu_b_start)
|
||||
w_bwd_buffers[idx] = weight_cpu.to(device, non_blocking=True)
|
||||
state["backward_clk"] ^= 1
|
||||
ev_tx_b.record()
|
||||
|
||||
torch.cuda.current_stream().wait_event(ev_tx_b)
|
||||
ev_cu_b_start.record()
|
||||
|
||||
# grad wrt input on GPU with streamed weights
|
||||
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
|
||||
|
||||
grad_input = conv2d_input(
|
||||
x.shape,
|
||||
w_bwd_buffers[idx],
|
||||
grad_out,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
)
|
||||
|
||||
# Ensure previous grad transfer that used this slot is done
|
||||
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
|
||||
|
||||
# Compute heavy grads on GPU into staging buffers
|
||||
w_grad_buffers[idx] = conv2d_weight(
|
||||
x,
|
||||
weight_cpu.shape,
|
||||
grad_out,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
)
|
||||
if bias_cpu is not None:
|
||||
b_grad_buffers[idx] = grad_out.sum(dim=(0, 2, 3))
|
||||
|
||||
# Mark end of GPU math
|
||||
ev_cu_b_finish.record()
|
||||
|
||||
# Launch CPU copies on the dedicated grad stream (overlaps with next H2D)
|
||||
with torch.cuda.stream(transfer_grad_stream):
|
||||
transfer_grad_stream.wait_event(ev_cu_b_finish)
|
||||
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
|
||||
grad_bias = (
|
||||
b_grad_buffers[idx].to("cpu", non_blocking=True)
|
||||
if bias_cpu is not None
|
||||
else None
|
||||
)
|
||||
state["transfer_weight_backward_finished_event"].record()
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None, None
|
||||
|
||||
|
||||
class BaseLayerMemoryManager:
|
||||
def __init__(
|
||||
self,
|
||||
module: nn.Module,
|
||||
manager: "MemoryManager",
|
||||
):
|
||||
self.module: nn.Module = module
|
||||
self.manager: "MemoryManager" = manager
|
||||
|
||||
@classmethod
|
||||
def attach(cls, module: nn.Module, manager: "MemoryManager"):
|
||||
if hasattr(module, "_layer_memory_manager"):
|
||||
return
|
||||
module._layer_memory_manager = cls(module, manager)
|
||||
|
||||
# mark parameters as memory managed
|
||||
for param in module.parameters(recurse=False):
|
||||
param._is_memory_managed = True
|
||||
|
||||
|
||||
class LinearLayerMemoryManager(BaseLayerMemoryManager):
|
||||
def __init__(
|
||||
self,
|
||||
module: nn.Module,
|
||||
manager: "MemoryManager",
|
||||
):
|
||||
super().__init__(module, manager)
|
||||
|
||||
# 1) Move params to CPU + pin memory for fast H2D
|
||||
_move_params_to_cpu_and_pin(self.module)
|
||||
|
||||
# 2) Hijack forward
|
||||
self._original_forward = getattr(self.module, "forward")
|
||||
|
||||
def _mm_forward(x, *args, **kwargs):
|
||||
# ensure we only use expected signature (Linear: x)
|
||||
if args or kwargs:
|
||||
# fall back to original if a custom signature is used
|
||||
return self._original_forward(x, *args, **kwargs)
|
||||
|
||||
weight_cpu = self.module.weight
|
||||
bias_cpu = getattr(self.module, "bias", None)
|
||||
device = self.manager.process_device
|
||||
|
||||
# NOTE: do NOT move params to device here; autograd fn streams & bounces them
|
||||
return _BouncingLinearFn.apply(x, weight_cpu, bias_cpu, device)
|
||||
|
||||
self.module.forward = _mm_forward
|
||||
|
||||
|
||||
class ConvLayerMemoryManager(BaseLayerMemoryManager):
|
||||
def __init__(
|
||||
self,
|
||||
module: nn.Module,
|
||||
manager: "MemoryManager",
|
||||
):
|
||||
super().__init__(module, manager)
|
||||
|
||||
# 1) Move params to CPU + pin memory for fast H2D
|
||||
_move_params_to_cpu_and_pin(self.module)
|
||||
|
||||
# Cache static conv attributes from the module
|
||||
stride = (
|
||||
self.module.stride
|
||||
if isinstance(self.module.stride, tuple)
|
||||
else (self.module.stride, self.module.stride)
|
||||
)
|
||||
padding = (
|
||||
self.module.padding
|
||||
if isinstance(self.module.padding, tuple)
|
||||
else (self.module.padding, self.module.padding)
|
||||
)
|
||||
dilation = (
|
||||
self.module.dilation
|
||||
if isinstance(self.module.dilation, tuple)
|
||||
else (self.module.dilation, self.module.dilation)
|
||||
)
|
||||
groups = self.module.groups
|
||||
|
||||
# 2) Hijack forward
|
||||
self._original_forward = getattr(self.module, "forward")
|
||||
|
||||
def _mm_forward(x, *args, **kwargs):
|
||||
# Support the typical Conv2d(x) call; if user passes uncommon extras, fallback.
|
||||
if args or kwargs:
|
||||
return self._original_forward(x, *args, **kwargs)
|
||||
|
||||
weight_cpu = self.module.weight
|
||||
bias_cpu = getattr(self.module, "bias", None)
|
||||
device = self.manager.process_device
|
||||
|
||||
return _BouncingConv2dFn.apply(
|
||||
x, weight_cpu, bias_cpu, device, stride, padding, dilation, groups
|
||||
)
|
||||
|
||||
self.module.forward = _mm_forward
|
||||
@@ -41,7 +41,6 @@ from torchvision.transforms import functional as TF
|
||||
from toolkit.accelerator import get_accelerator, unwrap_model
|
||||
from typing import TYPE_CHECKING
|
||||
from toolkit.print import print_acc
|
||||
from toolkit.memory_management import MemoryManager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.lora_special import LoRASpecialNetwork
|
||||
@@ -186,8 +185,6 @@ class BaseModel:
|
||||
self.has_multiple_control_images = False
|
||||
# do not resize control images
|
||||
self.use_raw_control_images = False
|
||||
|
||||
self.memory_manager = MemoryManager(self)
|
||||
|
||||
# properties for old arch for backwards compatibility
|
||||
@property
|
||||
|
||||
@@ -70,7 +70,6 @@ from typing import TYPE_CHECKING
|
||||
from toolkit.print import print_acc
|
||||
from diffusers import FluxFillPipeline
|
||||
from transformers import AutoModel, AutoTokenizer, Gemma2Model, Qwen2Model, LlamaModel
|
||||
from toolkit.memory_management import MemoryManager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.lora_special import LoRASpecialNetwork
|
||||
@@ -225,8 +224,6 @@ class StableDiffusion:
|
||||
# do not resize control images
|
||||
self.use_raw_control_images = False
|
||||
|
||||
self.memory_manager = MemoryManager(self)
|
||||
|
||||
# properties for old arch for backwards compatibility
|
||||
@property
|
||||
def is_xl(self):
|
||||
|
||||
@@ -301,14 +301,14 @@ def quantize_model(
|
||||
f" - quantizing {len(all_blocks)} transformer blocks"
|
||||
)
|
||||
for block in tqdm(all_blocks):
|
||||
block.to(base_model.device_torch, dtype=base_model.torch_dtype)
|
||||
block.to(base_model.device_torch, dtype=base_model.torch_dtype, non_blocking=True)
|
||||
quantize(block, weights=quantization_type)
|
||||
freeze(block)
|
||||
block.to("cpu")
|
||||
block.to("cpu", non_blocking=True)
|
||||
|
||||
# todo, on extras find a universal way to quantize them on device and move them back to their original
|
||||
# device without having to move the transformer blocks to the device first
|
||||
base_model.print_and_status_update(" - quantizing extras")
|
||||
model_to_quantize.to(base_model.device_torch, dtype=base_model.torch_dtype)
|
||||
# model_to_quantize.to(base_model.device_torch, dtype=base_model.torch_dtype)
|
||||
quantize(model_to_quantize, weights=quantization_type)
|
||||
freeze(model_to_quantize)
|
||||
|
||||
Reference in New Issue
Block a user