Initial support for RamTorch. Still a WIP

This commit is contained in:
Jaret Burkett
2025-10-05 13:03:26 -06:00
parent c6edd71a5b
commit 4e5707854f
8 changed files with 687 additions and 120 deletions

View File

@@ -624,6 +624,15 @@ class ModelConfig:
self.arch: ModelArch = kwargs.get("arch", None)
# auto memory management, only for some models
self.auto_memory = kwargs.get("auto_memory", False)
if self.auto_memory and self.qtype == "qfloat8":
print(f"Auto memory is not compatible with qfloat8, switching to float8 for model")
self.qtype = "float8"
if self.auto_memory and not self.qtype_te == "qfloat8":
print(f"Auto memory is not compatible with qfloat8, switching to float8 for te")
self.qtype_te = "float8"
# can be used to load the extras like text encoder or vae from here
# only setup for some models but will prevent having to download the te for
# 20 different model variants
@@ -650,6 +659,7 @@ class ModelConfig:
if self.arch == "flex1":
self.arch = "flux"
# handle migrating to new model arch
if self.arch is not None:

View File

@@ -1,12 +1,92 @@
from typing import TYPE_CHECKING
import torch
from .manager_modules import LinearLayerMemoryManager, ConvLayerMemoryManager
if TYPE_CHECKING:
from toolkit.models.base_model import BaseModel
LINEAR_MODULES = [
"Linear",
"LoRACompatibleLinear",
"QLinear",
]
CONV_MODULES = [
"Conv2d",
"LoRACompatibleConv",
"QConv2d",
]
UNMANAGED_MODULES = [
"LayerNorm",
"BatchNorm1d",
"BatchNorm2d",
"BatchNorm3d",
"GroupNorm",
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
"Embedding",
"EmbeddingBag",
"RNNBase",
"LSTM",
"GRU",
"RNN",
]
UNMANAGED_MODULES_INCLUDES = ["RotaryEmbedding", "Norm"]
class MemoryManager:
def __init__(
self,
model: "BaseModel",
module: torch.nn.Module,
process_device: torch.device = torch.device("cpu"),
):
self.model: "BaseModel" = model
self.module: torch.nn.Module = module
self.process_device: torch.device = process_device
self.unmanaged_modules: list[torch.nn.Module] = []
def memory_managed_to(self, *args, **kwargs):
# first move all the unmanaged modules
for module in self.unmanaged_modules:
module.to(*args, **kwargs)
# check for a dtype argument
dtype = None
if "dtype" in kwargs:
dtype = kwargs["dtype"]
elif len(args) > 0:
for i, arg in enumerate(args):
if isinstance(arg, torch.dtype):
dtype = arg
break
if dtype is not None:
return self.module._mm_to(dtype=dtype)
return self.module
@classmethod
def attach(cls, module: torch.nn.Module, device: torch.device):
if hasattr(module, "_memory_manager"):
# already attached
return
module._memory_manager = cls(module, device)
# override the to method to handle memory management
module._mm_to = module.to
module.to = module._memory_manager.memory_managed_to
# attach to all modules
for name, sub_module in module.named_modules():
for child_name, child_module in sub_module.named_modules():
if child_module.__class__.__name__ in LINEAR_MODULES:
# linear
LinearLayerMemoryManager.attach(
child_module, module._memory_manager
)
elif child_module.__class__.__name__ in CONV_MODULES:
# conv
ConvLayerMemoryManager.attach(child_module, module._memory_manager)
elif child_module.__class__.__name__ in UNMANAGED_MODULES or any(
inc in child_module.__class__.__name__
for inc in UNMANAGED_MODULES_INCLUDES
):
# unmanaged
module._memory_manager.unmanaged_modules.append(child_module)
else:
continue

View File

@@ -0,0 +1,450 @@
"""
This code was heavily inspired by the work of Lodestone-Rock, pretty much all credit goes
to them. The original code can be found here:
https://github.com/lodestone-rock/RamTorch/blob/main/ramtorch/modules/linear.py
I simply modified it to work with a memory management model and with AI Toolkit's models
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import TYPE_CHECKING, Optional, Tuple
if TYPE_CHECKING:
from .manager import MemoryManager
# --- Per-device global state registry ---
_DEVICE_STATE = {}
def _get_device_state(device: torch.device):
"""Get or initialize per-device state."""
if isinstance(device, str):
device = torch.device(device)
# CPU path needs no CUDA state
if device.type != "cuda":
if device not in _DEVICE_STATE:
_DEVICE_STATE[device] = {}
return _DEVICE_STATE[device]
if device not in _DEVICE_STATE:
with torch.cuda.device(device):
_DEVICE_STATE[device] = {
# streams & events
"transfer_stream": torch.cuda.Stream(device=device),
"transfer_grad_stream": torch.cuda.Stream(device=device),
"transfer_forward_finished_event": torch.cuda.Event(),
"compute_forward_start_event": torch.cuda.Event(),
"transfer_backward_finished_event": torch.cuda.Event(),
"transfer_weight_backward_finished_event": torch.cuda.Event(),
"compute_backward_start_event": torch.cuda.Event(),
"compute_backward_finished_event": torch.cuda.Event(),
# ping-pong buffers
"w_buffers": [None, None],
"b_buffers": [None, None],
"w_bwd_buffers": [None, None],
# device-side staging for grads to be sent to CPU
"w_grad_buffers": [None, None],
"b_grad_buffers": [None, None],
# clocks
"forward_clk": 0,
"backward_clk": 0,
}
return _DEVICE_STATE[device]
def _ensure_cpu_pinned(t: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
if t is None:
return None
if t.device.type != "cpu":
t = t.to("cpu", copy=True)
if torch.cuda.is_available():
try:
t = t.pin_memory()
except RuntimeError:
pass
return t
def _move_params_to_cpu_and_pin(module: nn.Module):
"""Force parameters to CPU (+pinned) so we can 'bounce' them per forward/backward."""
with torch.no_grad():
if hasattr(module, "weight") and isinstance(module.weight, nn.Parameter):
module.weight.data = _ensure_cpu_pinned(module.weight.data).detach()
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
if module.bias is not None:
module.bias.data = _ensure_cpu_pinned(module.bias.data).detach()
# ==========================
# Autograd functions (CUDA)
# ==========================
class _BouncingLinearFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight_cpu, bias_cpu, device: torch.device):
if device.type != "cuda":
out = F.linear(x.to("cpu"), weight_cpu, bias_cpu)
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
ctx.device = torch.device("cpu")
return out.to(x.device)
state = _get_device_state(device)
ts = state["transfer_stream"]
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
ev_tx_f = state["transfer_forward_finished_event"]
ev_cu_s = state["compute_forward_start_event"]
idx = state["forward_clk"]
with torch.cuda.stream(ts):
ts.wait_event(ev_cu_s)
w_bufs[idx] = weight_cpu.to(device, non_blocking=True)
b_bufs[idx] = (
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
)
state["forward_clk"] ^= 1
ev_tx_f.record()
torch.cuda.current_stream().wait_event(ev_tx_f)
ev_cu_s.record()
out = F.linear(x, w_bufs[idx], b_bufs[idx])
ctx.save_for_backward(x, weight_cpu, bias_cpu)
ctx.device = device
return out
@staticmethod
def backward(ctx, grad_out):
x, weight_cpu, bias_cpu = ctx.saved_tensors
device = ctx.device
if device.type != "cuda":
go_cpu = grad_out.to("cpu")
x_cpu = x.to("cpu")
grad_input = go_cpu @ weight_cpu
grad_weight = go_cpu.flatten(0, -2).T @ x_cpu.flatten(0, -2)
grad_bias = (
go_cpu.sum(dim=tuple(range(go_cpu.ndim - 1)))
if bias_cpu is not None
else None
)
return grad_input.to(grad_out.device), grad_weight, grad_bias, None
state = _get_device_state(device)
transfer_stream = state["transfer_stream"]
transfer_grad_stream = state["transfer_grad_stream"]
w_bwd_buffers = state["w_bwd_buffers"]
w_grad_buffers = state["w_grad_buffers"]
b_grad_buffers = state["b_grad_buffers"]
ev_tx_b = state["transfer_backward_finished_event"]
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
ev_cu_b_start = state["compute_backward_start_event"]
ev_cu_b_finish = state["compute_backward_finished_event"]
idx = state["backward_clk"]
# Stage weights onto device (transfer stream), ping-pong to avoid races
with torch.cuda.stream(transfer_stream):
transfer_stream.wait_event(ev_cu_b_start)
w_bwd_buffers[idx] = weight_cpu.to(device, non_blocking=True)
state["backward_clk"] ^= 1
ev_tx_b.record()
# Compute stream waits for weights to arrive, then start compute
torch.cuda.current_stream().wait_event(ev_tx_b)
ev_cu_b_start.record()
# 1) Compute grad_input using the freshly transferred weights
grad_input = grad_out @ w_bwd_buffers[idx]
# 2) Ensure previous grad-to-CPU transfer that used this slot finished
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
# 3) Compute weight/bias grads on GPU into staging buffers
w_grad_buffers[idx] = grad_out.flatten(0, -2).T @ x.flatten(0, -2)
if bias_cpu is not None:
reduce_dims = tuple(range(grad_out.ndim - 1))
b_grad_buffers[idx] = grad_out.sum(dim=reduce_dims)
# Mark end of GPU compute
ev_cu_b_finish.record()
# 4) Launch non-blocking H2D->CPU transfers on a separate grad stream (full-duplex)
with torch.cuda.stream(transfer_grad_stream):
transfer_grad_stream.wait_event(ev_cu_b_finish)
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
grad_bias = (
b_grad_buffers[idx].to("cpu", non_blocking=True)
if bias_cpu is not None
else None
)
# signal that this slot's CPU transfer is complete (safe for next reuse)
state["transfer_weight_backward_finished_event"].record()
return grad_input, grad_weight, grad_bias, None
class _BouncingConv2dFn(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x,
weight_cpu,
bias_cpu,
device: torch.device,
stride: Tuple[int, int],
padding: Tuple[int, int],
dilation: Tuple[int, int],
groups: int,
):
if device.type != "cuda":
out = F.conv2d(
x.to("cpu"), weight_cpu, bias_cpu, stride, padding, dilation, groups
)
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
ctx.meta = ("cpu", stride, padding, dilation, groups)
return out.to(x.device)
state = _get_device_state(device)
ts = state["transfer_stream"]
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
ev_tx_f = state["transfer_forward_finished_event"]
ev_cu_s = state["compute_forward_start_event"]
idx = state["forward_clk"]
with torch.cuda.stream(ts):
ts.wait_event(ev_cu_s)
w_bufs[idx] = weight_cpu.to(device, non_blocking=True)
b_bufs[idx] = (
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
)
state["forward_clk"] ^= 1
ev_tx_f.record()
torch.cuda.current_stream().wait_event(ev_tx_f)
ev_cu_s.record()
out = F.conv2d(x, w_bufs[idx], b_bufs[idx], stride, padding, dilation, groups)
ctx.save_for_backward(x, weight_cpu, bias_cpu)
ctx.meta = (device, stride, padding, dilation, groups)
return out
@staticmethod
def backward(ctx, grad_out):
x, weight_cpu, bias_cpu = ctx.saved_tensors
meta = ctx.meta
device, stride, padding, dilation, groups = meta
if (
isinstance(device, torch.device) and device.type != "cuda"
) or device == "cpu":
# CPU grads
go = grad_out.to("cpu")
x_cpu = x.to("cpu")
w_cpu = weight_cpu
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
grad_input = conv2d_input(
x_cpu.shape,
w_cpu,
go,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
grad_weight = conv2d_weight(
x_cpu,
w_cpu.shape,
go,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
grad_bias = go.sum(dim=(0, 2, 3)) if bias_cpu is not None else None
return (
grad_input.to(grad_out.device),
grad_weight,
grad_bias,
None,
None,
None,
None,
None,
)
# CUDA path (full-duplex)
state = _get_device_state(device)
transfer_stream = state["transfer_stream"]
transfer_grad_stream = state["transfer_grad_stream"]
# device-side buffers
w_bwd_buffers = state["w_bwd_buffers"]
w_grad_buffers = state["w_grad_buffers"]
b_grad_buffers = state["b_grad_buffers"]
ev_tx_b = state["transfer_backward_finished_event"]
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
ev_cu_b_start = state["compute_backward_start_event"]
ev_cu_b_finish = state["compute_backward_finished_event"]
idx = state["backward_clk"]
# Stage weights for input-grad compute
with torch.cuda.stream(transfer_stream):
transfer_stream.wait_event(ev_cu_b_start)
w_bwd_buffers[idx] = weight_cpu.to(device, non_blocking=True)
state["backward_clk"] ^= 1
ev_tx_b.record()
torch.cuda.current_stream().wait_event(ev_tx_b)
ev_cu_b_start.record()
# grad wrt input on GPU with streamed weights
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
grad_input = conv2d_input(
x.shape,
w_bwd_buffers[idx],
grad_out,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
# Ensure previous grad transfer that used this slot is done
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
# Compute heavy grads on GPU into staging buffers
w_grad_buffers[idx] = conv2d_weight(
x,
weight_cpu.shape,
grad_out,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
if bias_cpu is not None:
b_grad_buffers[idx] = grad_out.sum(dim=(0, 2, 3))
# Mark end of GPU math
ev_cu_b_finish.record()
# Launch CPU copies on the dedicated grad stream (overlaps with next H2D)
with torch.cuda.stream(transfer_grad_stream):
transfer_grad_stream.wait_event(ev_cu_b_finish)
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
grad_bias = (
b_grad_buffers[idx].to("cpu", non_blocking=True)
if bias_cpu is not None
else None
)
state["transfer_weight_backward_finished_event"].record()
return grad_input, grad_weight, grad_bias, None, None, None, None, None
class BaseLayerMemoryManager:
def __init__(
self,
module: nn.Module,
manager: "MemoryManager",
):
self.module: nn.Module = module
self.manager: "MemoryManager" = manager
@classmethod
def attach(cls, module: nn.Module, manager: "MemoryManager"):
if hasattr(module, "_layer_memory_manager"):
return
module._layer_memory_manager = cls(module, manager)
# mark parameters as memory managed
for param in module.parameters(recurse=False):
param._is_memory_managed = True
class LinearLayerMemoryManager(BaseLayerMemoryManager):
def __init__(
self,
module: nn.Module,
manager: "MemoryManager",
):
super().__init__(module, manager)
# 1) Move params to CPU + pin memory for fast H2D
_move_params_to_cpu_and_pin(self.module)
# 2) Hijack forward
self._original_forward = getattr(self.module, "forward")
def _mm_forward(x, *args, **kwargs):
# ensure we only use expected signature (Linear: x)
if args or kwargs:
# fall back to original if a custom signature is used
return self._original_forward(x, *args, **kwargs)
weight_cpu = self.module.weight
bias_cpu = getattr(self.module, "bias", None)
device = self.manager.process_device
# NOTE: do NOT move params to device here; autograd fn streams & bounces them
return _BouncingLinearFn.apply(x, weight_cpu, bias_cpu, device)
self.module.forward = _mm_forward
class ConvLayerMemoryManager(BaseLayerMemoryManager):
def __init__(
self,
module: nn.Module,
manager: "MemoryManager",
):
super().__init__(module, manager)
# 1) Move params to CPU + pin memory for fast H2D
_move_params_to_cpu_and_pin(self.module)
# Cache static conv attributes from the module
stride = (
self.module.stride
if isinstance(self.module.stride, tuple)
else (self.module.stride, self.module.stride)
)
padding = (
self.module.padding
if isinstance(self.module.padding, tuple)
else (self.module.padding, self.module.padding)
)
dilation = (
self.module.dilation
if isinstance(self.module.dilation, tuple)
else (self.module.dilation, self.module.dilation)
)
groups = self.module.groups
# 2) Hijack forward
self._original_forward = getattr(self.module, "forward")
def _mm_forward(x, *args, **kwargs):
# Support the typical Conv2d(x) call; if user passes uncommon extras, fallback.
if args or kwargs:
return self._original_forward(x, *args, **kwargs)
weight_cpu = self.module.weight
bias_cpu = getattr(self.module, "bias", None)
device = self.manager.process_device
return _BouncingConv2dFn.apply(
x, weight_cpu, bias_cpu, device, stride, padding, dilation, groups
)
self.module.forward = _mm_forward

View File

@@ -41,7 +41,6 @@ from torchvision.transforms import functional as TF
from toolkit.accelerator import get_accelerator, unwrap_model
from typing import TYPE_CHECKING
from toolkit.print import print_acc
from toolkit.memory_management import MemoryManager
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
@@ -186,8 +185,6 @@ class BaseModel:
self.has_multiple_control_images = False
# do not resize control images
self.use_raw_control_images = False
self.memory_manager = MemoryManager(self)
# properties for old arch for backwards compatibility
@property

View File

@@ -70,7 +70,6 @@ from typing import TYPE_CHECKING
from toolkit.print import print_acc
from diffusers import FluxFillPipeline
from transformers import AutoModel, AutoTokenizer, Gemma2Model, Qwen2Model, LlamaModel
from toolkit.memory_management import MemoryManager
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
@@ -225,8 +224,6 @@ class StableDiffusion:
# do not resize control images
self.use_raw_control_images = False
self.memory_manager = MemoryManager(self)
# properties for old arch for backwards compatibility
@property
def is_xl(self):

View File

@@ -301,14 +301,14 @@ def quantize_model(
f" - quantizing {len(all_blocks)} transformer blocks"
)
for block in tqdm(all_blocks):
block.to(base_model.device_torch, dtype=base_model.torch_dtype)
block.to(base_model.device_torch, dtype=base_model.torch_dtype, non_blocking=True)
quantize(block, weights=quantization_type)
freeze(block)
block.to("cpu")
block.to("cpu", non_blocking=True)
# todo, on extras find a universal way to quantize them on device and move them back to their original
# device without having to move the transformer blocks to the device first
base_model.print_and_status_update(" - quantizing extras")
model_to_quantize.to(base_model.device_torch, dtype=base_model.torch_dtype)
# model_to_quantize.to(base_model.device_torch, dtype=base_model.torch_dtype)
quantize(model_to_quantize, weights=quantization_type)
freeze(model_to_quantize)