Add support for training Z-Image Turbo with a de-distill training adapter

This commit is contained in:
Jaret Burkett
2025-11-28 08:08:53 -07:00
parent 21bb8a2bf4
commit 4e62c38df5
11 changed files with 459 additions and 7 deletions

View File

@@ -6,6 +6,7 @@ from .flux_kontext import FluxKontextModel
from .wan22 import Wan225bModel, Wan2214bModel, Wan2214bI2VModel
from .qwen_image import QwenImageModel, QwenImageEditModel, QwenImageEditPlusModel
from .flux2 import Flux2Model
from .z_image import ZImageModel
AI_TOOLKIT_MODELS = [
# put a list of models here
@@ -23,4 +24,5 @@ AI_TOOLKIT_MODELS = [
QwenImageEditModel,
QwenImageEditPlusModel,
Flux2Model,
ZImageModel,
]

View File

@@ -0,0 +1 @@
from .z_image import ZImageModel

View File

@@ -0,0 +1,396 @@
import os
from typing import List, Optional
import huggingface_hub
import torch
import yaml
from toolkit.config_modules import GenerateImageConfig, ModelConfig, NetworkConfig
from toolkit.lora_special import LoRASpecialNetwork
from toolkit.models.base_model import BaseModel
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import (
CustomFlowMatchEulerDiscreteScheduler,
)
from toolkit.accelerator import unwrap_model
from optimum.quanto import freeze
from toolkit.util.quantize import quantize, get_qtype, quantize_model
from toolkit.memory_management import MemoryManager
from safetensors.torch import load_file
from transformers import AutoTokenizer, Qwen3ForCausalLM
from diffusers import AutoencoderKL
try:
from diffusers import ZImagePipeline
from diffusers.models.transformers import ZImageTransformer2DModel
except ImportError:
raise ImportError(
"Diffusers is out of date. Update diffusers to the latest version by doing pip uninstall diffusers and then pip install -r requirements.txt"
)
scheduler_config = {
"num_train_timesteps": 1000,
"use_dynamic_shifting": False,
"shift": 3.0,
}
class ZImageModel(BaseModel):
arch = "zimage"
def __init__(
self,
device,
model_config: ModelConfig,
dtype="bf16",
custom_pipeline=None,
noise_scheduler=None,
**kwargs,
):
super().__init__(
device, model_config, dtype, custom_pipeline, noise_scheduler, **kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ["ZImageTransformer2DModel"]
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16 * 2 # 16 for the VAE, 2 for patch size
def load_training_adapter(self, transformer: ZImageTransformer2DModel):
self.print_and_status_update("Loading assistant LoRA")
lora_path = self.model_config.assistant_lora_path
if not os.path.exists(lora_path):
# assume it is a hub path
lora_splits = lora_path.split("/")
if len(lora_splits) != 3:
raise ValueError(
f"Assistant LoRA path {lora_path} is not a valid local path or hub path."
)
repo_id = "/".join(lora_splits[:2])
filename = lora_splits[2]
try:
lora_path = huggingface_hub.hf_hub_download(
repo_id=repo_id,
filename=filename,
)
# upgrade path to
self.model_config.assistant_lora_path = lora_path
except Exception as e:
raise ValueError(
f"Failed to download assistant LoRA from {lora_path}: {e}"
)
# load the adapter and merge it in. We will inference with a -1.0 multiplier so the adapter effects only work during training.
lora_state_dict = load_file(lora_path)
dim = int(
lora_state_dict[
"diffusion_model.layers.0.attention.to_k.lora_A.weight"
].shape[0]
)
new_sd = {}
for key, value in lora_state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
lora_state_dict = new_sd
network_config = {
"type": "lora",
"linear": dim,
"linear_alpha": dim,
"transformer_only": True,
}
network_config = NetworkConfig(**network_config)
LoRASpecialNetwork.LORA_PREFIX_UNET = "lora_transformer"
network = LoRASpecialNetwork(
text_encoder=None,
unet=transformer,
lora_dim=network_config.linear,
multiplier=1.0,
alpha=network_config.linear_alpha,
train_unet=True,
train_text_encoder=False,
network_config=network_config,
network_type=network_config.type,
transformer_only=network_config.transformer_only,
is_transformer=True,
target_lin_modules=self.target_lora_modules,
is_assistant_adapter=True,
)
network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)
self.print_and_status_update("Merging in assistant LoRA")
network.force_to(self.device_torch, dtype=self.torch_dtype)
network._update_torch_multiplier()
network.load_weights(lora_state_dict)
network.merge_in(merge_weight=1.0)
# mark it as not merged so inference ignores it.
network.is_merged_in = False
# add the assistant so sampler will activate it while sampling
self.assistant_lora: LoRASpecialNetwork = network
# deactivate lora during training
self.assistant_lora.multiplier = -1.0
self.assistant_lora.is_active = False
# tell the model to invert assistant on inference since we want remove lora effects
self.invert_assistant_lora = True
def load_model(self):
dtype = self.torch_dtype
self.print_and_status_update("Loading ZImage model")
model_path = self.model_config.name_or_path
base_model_path = self.model_config.extras_name_or_path
self.print_and_status_update("Loading transformer")
transformer_path = model_path
transformer_subfolder = "transformer"
if os.path.exists(transformer_path):
transformer_subfolder = None
transformer_path = os.path.join(transformer_path, "transformer")
# check if the path is a full checkpoint.
te_folder_path = os.path.join(model_path, "text_encoder")
# if we have the te, this folder is a full checkpoint, use it as the base
if os.path.exists(te_folder_path):
base_model_path = model_path
transformer = ZImageTransformer2DModel.from_pretrained(
transformer_path, subfolder=transformer_subfolder, torch_dtype=dtype
)
# load assistant lora if specified
if self.model_config.assistant_lora_path is not None:
self.load_training_adapter(transformer)
# set qtype to be float8 if it is qfloat8
if self.model_config.qtype == "qfloat8":
self.model_config.qtype = "float8"
if self.model_config.quantize:
self.print_and_status_update("Quantizing Transformer")
quantize_model(self, transformer)
flush()
if (
self.model_config.layer_offloading
and self.model_config.layer_offloading_transformer_percent > 0
):
MemoryManager.attach(
transformer,
self.device_torch,
offload_percent=self.model_config.layer_offloading_transformer_percent,
)
if self.model_config.low_vram:
self.print_and_status_update("Moving transformer to CPU")
transformer.to("cpu")
flush()
self.print_and_status_update("Text Encoder")
tokenizer = AutoTokenizer.from_pretrained(
base_model_path, subfolder="tokenizer", torch_dtype=dtype
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
base_model_path, subfolder="text_encoder", torch_dtype=dtype
)
if (
self.model_config.layer_offloading
and self.model_config.layer_offloading_text_encoder_percent > 0
):
MemoryManager.attach(
text_encoder,
self.device_torch,
offload_percent=self.model_config.layer_offloading_text_encoder_percent,
)
text_encoder.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing Text Encoder")
quantize(text_encoder, weights=get_qtype(self.model_config.qtype_te))
freeze(text_encoder)
flush()
self.print_and_status_update("Loading VAE")
vae = AutoencoderKL.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=dtype
)
self.noise_scheduler = ZImageModel.get_train_scheduler()
self.print_and_status_update("Making pipe")
kwargs = {}
pipe: ZImagePipeline = ZImagePipeline(
scheduler=self.noise_scheduler,
text_encoder=None,
tokenizer=tokenizer,
vae=vae,
transformer=None,
**kwargs,
)
# for quantization, it works best to do these after making the pipe
pipe.text_encoder = text_encoder
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = [pipe.text_encoder]
tokenizer = [pipe.tokenizer]
# leave it on cpu for now
if not self.low_vram:
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# just to make sure everything is on the right device and dtype
text_encoder[0].to(self.device_torch)
text_encoder[0].requires_grad_(False)
text_encoder[0].eval()
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder # list of text encoders
self.tokenizer = tokenizer # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = ZImageModel.get_train_scheduler()
pipeline: ZImagePipeline = ZImagePipeline(
scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0],
vae=unwrap_model(self.vae),
transformer=unwrap_model(self.transformer),
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: ZImagePipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
self.model.to(self.device_torch, dtype=self.torch_dtype)
self.model.to(self.device_torch)
sc = self.get_bucket_divisibility()
gen_config.width = int(gen_config.width // sc * sc)
gen_config.height = int(gen_config.height // sc * sc)
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
negative_prompt_embeds=unconditional_embeds.text_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
**extra,
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs,
):
self.model.to(self.device_torch)
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
timestep_model_input = (1000 - timestep) / 1000
model_out_list = self.transformer(
latent_model_input_list,
timestep_model_input,
text_embeddings.text_embeds,
)[0]
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
noise_pred = noise_pred.squeeze(2)
noise_pred = -noise_pred
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
if self.pipeline.text_encoder.device != self.device_torch:
self.pipeline.text_encoder.to(self.device_torch)
prompt_embeds, _ = self.pipeline.encode_prompt(
prompt,
do_classifier_free_guidance=False,
device=self.device_torch,
)
pe = PromptEmbeds([prompt_embeds, None])
return pe
def get_model_has_grad(self):
return False
def get_te_has_grad(self):
return False
def save_model(self, output_path, meta, save_dtype):
transformer: ZImageTransformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, "transformer"),
safe_serialization=True,
)
meta_path = os.path.join(output_path, "aitk_meta.yaml")
with open(meta_path, "w") as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get("noise")
batch = kwargs.get("batch")
return (noise - batch.latents).detach()
def get_base_model_version(self):
return "zimage"
def get_transformer_block_names(self) -> Optional[List[str]]:
return ["layers"]
def convert_lora_weights_before_save(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd