diff --git a/extensions_built_in/sd_trainer/SDTrainer.py b/extensions_built_in/sd_trainer/SDTrainer.py index 5742edea..bd8cf957 100644 --- a/extensions_built_in/sd_trainer/SDTrainer.py +++ b/extensions_built_in/sd_trainer/SDTrainer.py @@ -99,7 +99,7 @@ class SDTrainer(BaseSDTrainProcess): # check if we have regs and using adapter and caching clip embeddings has_reg = self.datasets_reg is not None and len(self.datasets_reg) > 0 - is_caching_clip_embeddings = any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))]) + is_caching_clip_embeddings = self.datasets is not None and any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))]) if has_reg and is_caching_clip_embeddings: # we need a list of unconditional clip image embeds from other datasets to handle regs diff --git a/toolkit/config_modules.py b/toolkit/config_modules.py index 14cc31c2..132906a5 100644 --- a/toolkit/config_modules.py +++ b/toolkit/config_modules.py @@ -332,6 +332,9 @@ class ModelConfig: self.is_v2: bool = kwargs.get('is_v2', False) self.is_xl: bool = kwargs.get('is_xl', False) self.is_pixart: bool = kwargs.get('is_pixart', False) + self.is_pixart_sigma: bool = kwargs.get('is_pixart', False) + if self.is_pixart_sigma: + self.is_pixart = True self.is_ssd: bool = kwargs.get('is_ssd', False) self.is_vega: bool = kwargs.get('is_vega', False) self.is_v_pred: bool = kwargs.get('is_v_pred', False) diff --git a/toolkit/models/te_adapter.py b/toolkit/models/te_adapter.py index 0a1acada..c1b77831 100644 --- a/toolkit/models/te_adapter.py +++ b/toolkit/models/te_adapter.py @@ -33,8 +33,9 @@ class TEAdapterAttnProcessor(nn.Module): """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None, - adapter_hidden_size=None): + adapter_hidden_size=None, layer_name=None): super().__init__() + self.layer_name = layer_name if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") @@ -170,6 +171,7 @@ class TEAdapter(torch.nn.Module): self.sd_ref: weakref.ref = weakref.ref(sd) self.te_ref: weakref.ref = weakref.ref(te) self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer) + self.adapter_modules = [] if self.adapter_ref().config.text_encoder_arch == "t5": self.token_size = self.te_ref().config.d_model @@ -239,9 +241,11 @@ class TEAdapter(torch.nn.Module): scale=1.0, num_tokens=self.adapter_ref().config.num_tokens, adapter=self, - adapter_hidden_size=self.token_size + adapter_hidden_size=self.token_size, + layer_name=layer_name ) attn_procs[name].load_state_dict(weights) + self.adapter_modules.append(attn_procs[name]) sd.unet.set_attn_processor(attn_procs) self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) @@ -262,7 +266,10 @@ class TEAdapter(torch.nn.Module): return_tensors="pt", ).input_ids.to(te.device) outputs = te(input_ids=input_ids) - return outputs.last_hidden_state + outputs = outputs.last_hidden_state + return outputs + + def forward(self, input): return input diff --git a/toolkit/stable_diffusion_model.py b/toolkit/stable_diffusion_model.py index c5430b37..44516834 100644 --- a/toolkit/stable_diffusion_model.py +++ b/toolkit/stable_diffusion_model.py @@ -46,6 +46,7 @@ from diffusers import \ UNet2DConditionModel from diffusers import PixArtAlphaPipeline, DPMSolverMultistepScheduler from transformers import T5EncoderModel +from toolkit.util.pixart_sigma_patch import pixart_sigma_init_patched_inputs, PixArtSigmaPipeline from toolkit.paths import ORIG_CONFIGS_ROOT, DIFFUSERS_CONFIGS_ROOT from toolkit.util.inverse_cfg import inverse_classifier_guidance @@ -237,15 +238,22 @@ class StableDiffusion: elif self.model_config.is_pixart: te_kwargs = {} # handle quantization of TE + te_is_quantized = False if self.model_config.text_encoder_bits == 8: te_kwargs['load_in_8bit'] = True te_kwargs['device_map'] = "auto" + te_is_quantized = True elif self.model_config.text_encoder_bits == 4: te_kwargs['load_in_4bit'] = True te_kwargs['device_map'] = "auto" + te_is_quantized = True + + main_model_path = "PixArt-alpha/PixArt-XL-2-1024-MS" + if self.model_config.is_pixart_sigma: + main_model_path = "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers" # load the TE in 8bit mode text_encoder = T5EncoderModel.from_pretrained( - "PixArt-alpha/PixArt-XL-2-1024-MS", + main_model_path, subfolder="text_encoder", torch_dtype=self.torch_dtype, **te_kwargs @@ -256,20 +264,46 @@ class StableDiffusion: # check if it is just the unet if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)): subfolder = None - # load the transformer only from the save - transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype, subfolder=subfolder) + if te_is_quantized: + # replace the to function with a no-op since it throws an error instead of a warning + text_encoder.to = lambda *args, **kwargs: None - # replace the to function with a no-op since it throws an error instead of a warning - text_encoder.to = lambda *args, **kwargs: None - pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained( - "PixArt-alpha/PixArt-XL-2-1024-MS", - transformer=transformer, - text_encoder=text_encoder, - dtype=dtype, - device=self.device_torch, - **load_args - ).to(self.device_torch) + if self.model_config.is_pixart_sigma: + # tmp patches for diffusers PixArtSigmaPipeline Implementation + print( + "Changing _init_patched_inputs method of diffusers.models.Transformer2DModel " + "using scripts.diffusers_patches.pixart_sigma_init_patched_inputs") + setattr(Transformer2DModel, '_init_patched_inputs', pixart_sigma_init_patched_inputs) + + # load the transformer only from the save + transformer = Transformer2DModel.from_pretrained( + model_path, + torch_dtype=self.torch_dtype, + subfolder='transformer' + ) + pipe: PixArtAlphaPipeline = PixArtSigmaPipeline.from_pretrained( + main_model_path, + transformer=transformer, + text_encoder=text_encoder, + dtype=dtype, + device=self.device_torch, + **load_args + ) + + else: + + # load the transformer only from the save + transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype, + subfolder=subfolder) + pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained( + main_model_path, + transformer=transformer, + text_encoder=text_encoder, + dtype=dtype, + device=self.device_torch, + **load_args + ).to(self.device_torch) pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype) flush() @@ -1282,7 +1316,7 @@ class StableDiffusion: self.text_encoder, prompt, truncate=not long_prompts, - max_length=max_length, + max_length=300 if self.model_config.is_pixart_sigma else 120, dropout_prob=dropout_prob ) return PromptEmbeds( diff --git a/toolkit/util/pixart_sigma_patch.py b/toolkit/util/pixart_sigma_patch.py new file mode 100644 index 00000000..d7f374de --- /dev/null +++ b/toolkit/util/pixart_sigma_patch.py @@ -0,0 +1,541 @@ +import torch +from diffusers import ImagePipelineOutput, PixArtAlphaPipeline, AutoencoderKL, Transformer2DModel, \ + DPMSolverMultistepScheduler +from diffusers.image_processor import VaeImageProcessor +from diffusers.models.attention import BasicTransformerBlock +from diffusers.models.embeddings import PixArtAlphaTextProjection, PatchEmbed +from diffusers.models.normalization import AdaLayerNormSingle +from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps +from typing import Callable, List, Optional, Tuple, Union + +from diffusers.utils import deprecate +from torch import nn +from transformers import T5Tokenizer, T5EncoderModel + +ASPECT_RATIO_2048_BIN = { + "0.25": [1024.0, 4096.0], + "0.26": [1024.0, 3968.0], + "0.27": [1024.0, 3840.0], + "0.28": [1024.0, 3712.0], + "0.32": [1152.0, 3584.0], + "0.33": [1152.0, 3456.0], + "0.35": [1152.0, 3328.0], + "0.4": [1280.0, 3200.0], + "0.42": [1280.0, 3072.0], + "0.48": [1408.0, 2944.0], + "0.5": [1408.0, 2816.0], + "0.52": [1408.0, 2688.0], + "0.57": [1536.0, 2688.0], + "0.6": [1536.0, 2560.0], + "0.68": [1664.0, 2432.0], + "0.72": [1664.0, 2304.0], + "0.78": [1792.0, 2304.0], + "0.82": [1792.0, 2176.0], + "0.88": [1920.0, 2176.0], + "0.94": [1920.0, 2048.0], + "1.0": [2048.0, 2048.0], + "1.07": [2048.0, 1920.0], + "1.13": [2176.0, 1920.0], + "1.21": [2176.0, 1792.0], + "1.29": [2304.0, 1792.0], + "1.38": [2304.0, 1664.0], + "1.46": [2432.0, 1664.0], + "1.67": [2560.0, 1536.0], + "1.75": [2688.0, 1536.0], + "2.0": [2816.0, 1408.0], + "2.09": [2944.0, 1408.0], + "2.4": [3072.0, 1280.0], + "2.5": [3200.0, 1280.0], + "2.89": [3328.0, 1152.0], + "3.0": [3456.0, 1152.0], + "3.11": [3584.0, 1152.0], + "3.62": [3712.0, 1024.0], + "3.75": [3840.0, 1024.0], + "3.88": [3968.0, 1024.0], + "4.0": [4096.0, 1024.0] +} + +ASPECT_RATIO_256_BIN = { + "0.25": [128.0, 512.0], + "0.28": [128.0, 464.0], + "0.32": [144.0, 448.0], + "0.33": [144.0, 432.0], + "0.35": [144.0, 416.0], + "0.4": [160.0, 400.0], + "0.42": [160.0, 384.0], + "0.48": [176.0, 368.0], + "0.5": [176.0, 352.0], + "0.52": [176.0, 336.0], + "0.57": [192.0, 336.0], + "0.6": [192.0, 320.0], + "0.68": [208.0, 304.0], + "0.72": [208.0, 288.0], + "0.78": [224.0, 288.0], + "0.82": [224.0, 272.0], + "0.88": [240.0, 272.0], + "0.94": [240.0, 256.0], + "1.0": [256.0, 256.0], + "1.07": [256.0, 240.0], + "1.13": [272.0, 240.0], + "1.21": [272.0, 224.0], + "1.29": [288.0, 224.0], + "1.38": [288.0, 208.0], + "1.46": [304.0, 208.0], + "1.67": [320.0, 192.0], + "1.75": [336.0, 192.0], + "2.0": [352.0, 176.0], + "2.09": [368.0, 176.0], + "2.4": [384.0, 160.0], + "2.5": [400.0, 160.0], + "3.0": [432.0, 144.0], + "4.0": [512.0, 128.0] +} + +ASPECT_RATIO_1024_BIN = { + "0.25": [512.0, 2048.0], + "0.28": [512.0, 1856.0], + "0.32": [576.0, 1792.0], + "0.33": [576.0, 1728.0], + "0.35": [576.0, 1664.0], + "0.4": [640.0, 1600.0], + "0.42": [640.0, 1536.0], + "0.48": [704.0, 1472.0], + "0.5": [704.0, 1408.0], + "0.52": [704.0, 1344.0], + "0.57": [768.0, 1344.0], + "0.6": [768.0, 1280.0], + "0.68": [832.0, 1216.0], + "0.72": [832.0, 1152.0], + "0.78": [896.0, 1152.0], + "0.82": [896.0, 1088.0], + "0.88": [960.0, 1088.0], + "0.94": [960.0, 1024.0], + "1.0": [1024.0, 1024.0], + "1.07": [1024.0, 960.0], + "1.13": [1088.0, 960.0], + "1.21": [1088.0, 896.0], + "1.29": [1152.0, 896.0], + "1.38": [1152.0, 832.0], + "1.46": [1216.0, 832.0], + "1.67": [1280.0, 768.0], + "1.75": [1344.0, 768.0], + "2.0": [1408.0, 704.0], + "2.09": [1472.0, 704.0], + "2.4": [1536.0, 640.0], + "2.5": [1600.0, 640.0], + "3.0": [1728.0, 576.0], + "4.0": [2048.0, 512.0], +} + +ASPECT_RATIO_512_BIN = { + "0.25": [256.0, 1024.0], + "0.28": [256.0, 928.0], + "0.32": [288.0, 896.0], + "0.33": [288.0, 864.0], + "0.35": [288.0, 832.0], + "0.4": [320.0, 800.0], + "0.42": [320.0, 768.0], + "0.48": [352.0, 736.0], + "0.5": [352.0, 704.0], + "0.52": [352.0, 672.0], + "0.57": [384.0, 672.0], + "0.6": [384.0, 640.0], + "0.68": [416.0, 608.0], + "0.72": [416.0, 576.0], + "0.78": [448.0, 576.0], + "0.82": [448.0, 544.0], + "0.88": [480.0, 544.0], + "0.94": [480.0, 512.0], + "1.0": [512.0, 512.0], + "1.07": [512.0, 480.0], + "1.13": [544.0, 480.0], + "1.21": [544.0, 448.0], + "1.29": [576.0, 448.0], + "1.38": [576.0, 416.0], + "1.46": [608.0, 416.0], + "1.67": [640.0, 384.0], + "1.75": [672.0, 384.0], + "2.0": [704.0, 352.0], + "2.09": [736.0, 352.0], + "2.4": [768.0, 320.0], + "2.5": [800.0, 320.0], + "3.0": [864.0, 288.0], + "4.0": [1024.0, 256.0], +} + + +def pipeline_pixart_alpha_call( + self, + prompt: Union[str, List[str]] = None, + negative_prompt: str = "", + num_inference_steps: int = 20, + timesteps: List[int] = None, + guidance_scale: float = 4.5, + num_images_per_prompt: Optional[int] = 1, + height: Optional[int] = None, + width: Optional[int] = None, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + clean_caption: bool = True, + use_resolution_binning: bool = True, + max_sequence_length: int = 120, + **kwargs, +) -> Union[ImagePipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_inference_steps (`int`, *optional*, defaults to 100): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` + timesteps are used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 4.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + height (`int`, *optional*, defaults to self.unet.config.sample_size): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size): + The width in pixels of the generated image. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not + provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. + negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): + Pre-generated attention mask for negative text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + clean_caption (`bool`, *optional*, defaults to `True`): + Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to + be installed. If the dependencies are not installed, the embeddings will be created from the raw + prompt. + use_resolution_binning (`bool` defaults to `True`): + If set to `True`, the requested height and width are first mapped to the closest resolutions using + `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to + the requested resolution. Useful for generating non-square images. + + Examples: + + Returns: + [`~pipelines.ImagePipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is + returned where the first element is a list with the generated images + """ + if "mask_feature" in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) + # 1. Check inputs. Raise error if not correct + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + if use_resolution_binning: + if self.transformer.config.sample_size == 32: + aspect_ratio_bin = ASPECT_RATIO_256_BIN + elif self.transformer.config.sample_size == 64: + aspect_ratio_bin = ASPECT_RATIO_512_BIN + elif self.transformer.config.sample_size == 128: + aspect_ratio_bin = ASPECT_RATIO_1024_BIN + elif self.transformer.config.sample_size == 256: + aspect_ratio_bin = ASPECT_RATIO_2048_BIN + else: + raise ValueError("Invalid sample size") + orig_height, orig_width = height, width + height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + + self.check_inputs( + prompt, + height, + width, + negative_prompt, + callback_steps, + prompt_embeds, + negative_prompt_embeds, + prompt_attention_mask, + negative_prompt_attention_mask, + ) + + # 2. Default height and width to transformer + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) = self.encode_prompt( + prompt, + do_classifier_free_guidance, + negative_prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + prompt_attention_mask=prompt_attention_mask, + negative_prompt_attention_mask=negative_prompt_attention_mask, + clean_caption=clean_caption, + max_sequence_length=max_sequence_length, + ) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + + # 4. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + + # 5. Prepare latents. + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + latent_channels, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 6.1 Prepare micro-conditions. + added_cond_kwargs = {"resolution": None, "aspect_ratio": None} + if self.transformer.config.sample_size == 128: + resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) + aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) + resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) + aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) + + if do_classifier_free_guidance: + resolution = torch.cat([resolution, resolution], dim=0) + aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) + + added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} + + # 7. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + current_timestep = t + if not torch.is_tensor(current_timestep): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = latent_model_input.device.type == "mps" + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + + # predict noise model_output + noise_pred = self.transformer( + latent_model_input, + encoder_hidden_states=prompt_embeds, + encoder_attention_mask=prompt_attention_mask, + timestep=current_timestep, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # learned sigma + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + + # compute previous image: x_t -> x_t-1 + if num_inference_steps == 1: + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample + else: + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if use_resolution_binning: + image = self.resize_and_crop_tensor(image, orig_width, orig_height) + else: + image = latents + + if not output_type == "latent": + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image) + + +class PixArtSigmaPipeline(PixArtAlphaPipeline): + r""" + tmp Pipeline for text-to-image generation using PixArt-Sigma. + """ + + def __init__( + self, + tokenizer: T5Tokenizer, + text_encoder: T5EncoderModel, + vae: AutoencoderKL, + transformer: Transformer2DModel, + scheduler: DPMSolverMultistepScheduler, + ): + super().__init__(tokenizer, text_encoder, vae, transformer, scheduler) + + self.register_modules( + tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler + ) + + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + +def pixart_sigma_init_patched_inputs(self, norm_type): + assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size" + + self.height = self.config.sample_size + self.width = self.config.sample_size + + self.patch_size = self.config.patch_size + interpolation_scale = ( + self.config.interpolation_scale + if self.config.interpolation_scale is not None + else max(self.config.sample_size // 64, 1) + ) + self.pos_embed = PatchEmbed( + height=self.config.sample_size, + width=self.config.sample_size, + patch_size=self.config.patch_size, + in_channels=self.in_channels, + embed_dim=self.inner_dim, + interpolation_scale=interpolation_scale, + ) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + self.inner_dim, + self.config.num_attention_heads, + self.config.attention_head_dim, + dropout=self.config.dropout, + cross_attention_dim=self.config.cross_attention_dim, + activation_fn=self.config.activation_fn, + num_embeds_ada_norm=self.config.num_embeds_ada_norm, + attention_bias=self.config.attention_bias, + only_cross_attention=self.config.only_cross_attention, + double_self_attention=self.config.double_self_attention, + upcast_attention=self.config.upcast_attention, + norm_type=norm_type, + norm_elementwise_affine=self.config.norm_elementwise_affine, + norm_eps=self.config.norm_eps, + attention_type=self.config.attention_type, + ) + for _ in range(self.config.num_layers) + ] + ) + + if self.config.norm_type != "ada_norm_single": + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) + self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) + self.proj_out_2 = nn.Linear( + self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels + ) + elif self.config.norm_type == "ada_norm_single": + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) + self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5) + self.proj_out = nn.Linear( + self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels + ) + + # PixArt-Sigma blocks. + self.adaln_single = None + self.use_additional_conditions = False + if self.config.norm_type == "ada_norm_single": + # TODO(Sayak, PVP) clean this, PixArt-Sigma doesn't use additional_conditions anymore + # additional conditions until we find better name + self.adaln_single = AdaLayerNormSingle( + self.inner_dim, use_additional_conditions=self.use_additional_conditions + ) + + self.caption_projection = None + if self.caption_channels is not None: + self.caption_projection = PixArtAlphaTextProjection( + in_features=self.caption_channels, hidden_size=self.inner_dim + )