Working multi gpu training. Still need a lot of tweaks and testing.

This commit is contained in:
Jaret Burkett
2025-01-25 16:46:20 -07:00
parent 441474e81f
commit 5e663746b8
9 changed files with 432 additions and 294 deletions

17
toolkit/accelerator.py Normal file
View File

@@ -0,0 +1,17 @@
from accelerate import Accelerator
from diffusers.utils.torch_utils import is_compiled_module
global_accelerator = None
def get_accelerator() -> Accelerator:
global global_accelerator
if global_accelerator is None:
global_accelerator = Accelerator()
return global_accelerator
def unwrap_model(model):
accelerator = get_accelerator()
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model

View File

@@ -20,6 +20,8 @@ from toolkit.buckets import get_bucket_for_image_size, BucketResolution
from toolkit.config_modules import DatasetConfig, preprocess_dataset_raw_config
from toolkit.dataloader_mixins import CaptionMixin, BucketsMixin, LatentCachingMixin, Augments, CLIPCachingMixin
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
from toolkit.print import print_acc
from toolkit.accelerator import get_accelerator
import platform
@@ -90,7 +92,7 @@ class ImageDataset(Dataset, CaptionMixin):
file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
# this might take a while
print(f" - Preprocessing image dimensions")
print_acc(f" - Preprocessing image dimensions")
new_file_list = []
bad_count = 0
for file in tqdm(self.file_list):
@@ -102,8 +104,8 @@ class ImageDataset(Dataset, CaptionMixin):
self.file_list = new_file_list
print(f" - Found {len(self.file_list)} images")
print(f" - Found {bad_count} images that are too small")
print_acc(f" - Found {len(self.file_list)} images")
print_acc(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.path}"
self.transform = transforms.Compose([
@@ -128,8 +130,8 @@ class ImageDataset(Dataset, CaptionMixin):
try:
img = exif_transpose(Image.open(img_path)).convert('RGB')
except Exception as e:
print(f"Error opening image: {img_path}")
print(e)
print_acc(f"Error opening image: {img_path}")
print_acc(e)
# make a noise image if we can't open it
img = Image.fromarray(np.random.randint(0, 255, (1024, 1024, 3), dtype=np.uint8))
@@ -140,7 +142,7 @@ class ImageDataset(Dataset, CaptionMixin):
if self.random_crop:
if self.random_scale and min_img_size > self.resolution:
if min_img_size < self.resolution:
print(
print_acc(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={img_path}")
scale_size = self.resolution
else:
@@ -243,11 +245,11 @@ class PairedImageDataset(Dataset):
matched_files = [t for t in (set(tuple(i) for i in matched_files))]
self.file_list = matched_files
print(f" - Found {len(self.file_list)} matching pairs")
print_acc(f" - Found {len(self.file_list)} matching pairs")
else:
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(supported_exts)]
print(f" - Found {len(self.file_list)} images")
print_acc(f" - Found {len(self.file_list)} images")
self.transform = transforms.Compose([
transforms.ToTensor(),
@@ -435,11 +437,12 @@ class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, Capti
])
# this might take a while
print(f"Dataset: {self.dataset_path}")
print(f" - Preprocessing image dimensions")
print_acc(f"Dataset: {self.dataset_path}")
print_acc(f" - Preprocessing image dimensions")
dataset_folder = self.dataset_path
if not os.path.isdir(self.dataset_path):
dataset_folder = os.path.dirname(dataset_folder)
dataset_size_file = os.path.join(dataset_folder, '.aitk_size.json')
dataloader_version = "0.1.1"
if os.path.exists(dataset_size_file):
@@ -448,12 +451,12 @@ class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, Capti
self.size_database = json.load(f)
if "__version__" not in self.size_database or self.size_database["__version__"] != dataloader_version:
print("Upgrading size database to new version")
print_acc("Upgrading size database to new version")
# old version, delete and recreate
self.size_database = {}
except Exception as e:
print(f"Error loading size database: {dataset_size_file}")
print(e)
print_acc(f"Error loading size database: {dataset_size_file}")
print_acc(e)
self.size_database = {}
else:
self.size_database = {}
@@ -473,22 +476,22 @@ class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, Capti
)
self.file_list.append(file_item)
except Exception as e:
print(traceback.format_exc())
print(f"Error processing image: {file}")
print(e)
print_acc(traceback.format_exc())
print_acc(f"Error processing image: {file}")
print_acc(e)
bad_count += 1
# save the size database
with open(dataset_size_file, 'w') as f:
json.dump(self.size_database, f)
print(f" - Found {len(self.file_list)} images")
# print(f" - Found {bad_count} images that are too small")
print_acc(f" - Found {len(self.file_list)} images")
# print_acc(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.dataset_path}"
# handle x axis flips
if self.dataset_config.flip_x:
print(" - adding x axis flips")
print_acc(" - adding x axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the x axis
@@ -498,7 +501,7 @@ class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, Capti
# handle y axis flips
if self.dataset_config.flip_y:
print(" - adding y axis flips")
print_acc(" - adding y axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the y axis
@@ -507,7 +510,7 @@ class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, Capti
self.file_list.append(new_file_item)
if self.dataset_config.flip_x or self.dataset_config.flip_y:
print(f" - Found {len(self.file_list)} images after adding flips")
print_acc(f" - Found {len(self.file_list)} images after adding flips")
self.setup_epoch()

View File

@@ -24,6 +24,8 @@ from torchvision import transforms
from PIL import Image, ImageFilter, ImageOps
from PIL.ImageOps import exif_transpose
import albumentations as A
from toolkit.print import print_acc
from toolkit.accelerator import get_accelerator
from toolkit.train_tools import get_torch_dtype
@@ -32,6 +34,8 @@ if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import FileItemDTO
from toolkit.stable_diffusion_model import StableDiffusion
accelerator = get_accelerator()
# def get_associated_caption_from_img_path(img_path):
# https://demo.albumentations.ai/
class Augments:
@@ -263,7 +267,7 @@ class BucketsMixin:
file_item.crop_y = int((file_item.scale_to_height - new_height) / 2)
if file_item.crop_y < 0 or file_item.crop_x < 0:
print('debug')
print_acc('debug')
# check if bucket exists, if not, create it
bucket_key = f'{file_item.crop_width}x{file_item.crop_height}'
@@ -275,10 +279,10 @@ class BucketsMixin:
self.shuffle_buckets()
self.build_batch_indices()
if not quiet:
print(f'Bucket sizes for {self.dataset_path}:')
print_acc(f'Bucket sizes for {self.dataset_path}:')
for key, bucket in self.buckets.items():
print(f'{key}: {len(bucket.file_list_idx)} files')
print(f'{len(self.buckets)} buckets made')
print_acc(f'{key}: {len(bucket.file_list_idx)} files')
print_acc(f'{len(self.buckets)} buckets made')
class CaptionProcessingDTOMixin:
@@ -447,8 +451,8 @@ class ImageProcessingDTOMixin:
img = Image.open(self.path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.path}")
print_acc(f"Error: {e}")
print_acc(f"Error loading image: {self.path}")
if self.use_alpha_as_mask:
# we do this to make sure it does not replace the alpha with another color
@@ -462,11 +466,11 @@ class ImageProcessingDTOMixin:
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
print(
print_acc(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
print(
print_acc(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.flip_x:
@@ -482,7 +486,7 @@ class ImageProcessingDTOMixin:
# crop to x_crop, y_crop, x_crop + crop_width, y_crop + crop_height
if img.width < self.crop_x + self.crop_width or img.height < self.crop_y + self.crop_height:
# todo look into this. This still happens sometimes
print('size mismatch')
print_acc('size mismatch')
img = img.crop((
self.crop_x,
self.crop_y,
@@ -501,7 +505,7 @@ class ImageProcessingDTOMixin:
if self.dataset_config.random_crop:
if self.dataset_config.random_scale and min_img_size > self.dataset_config.resolution:
if min_img_size < self.dataset_config.resolution:
print(
print_acc(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.dataset_config.resolution}, image file={self.path}")
scale_size = self.dataset_config.resolution
else:
@@ -567,8 +571,8 @@ class ControlFileItemDTOMixin:
img = Image.open(self.control_path).convert('RGB')
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.control_path}")
print_acc(f"Error: {e}")
print_acc(f"Error loading image: {self.control_path}")
if self.full_size_control_images:
# we just scale them to 512x512:
@@ -782,8 +786,8 @@ class ClipImageFileItemDTOMixin:
except Exception as e:
# make a random noise image
img = Image.new('RGB', (self.dataset_config.resolution, self.dataset_config.resolution))
print(f"Error: {e}")
print(f"Error loading image: {clip_image_path}")
print_acc(f"Error: {e}")
print_acc(f"Error loading image: {clip_image_path}")
img = img.convert('RGB')
@@ -981,8 +985,8 @@ class MaskFileItemDTOMixin:
img = Image.open(self.mask_path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.mask_path}")
print_acc(f"Error: {e}")
print_acc(f"Error loading image: {self.mask_path}")
if self.use_alpha_as_mask:
# pipeline expectws an rgb image so we need to put alpha in all channels
@@ -999,11 +1003,11 @@ class MaskFileItemDTOMixin:
fix_size = False
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
print(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
print_acc(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
fix_size = True
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
print(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
print_acc(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
fix_size = True
if fix_size:
@@ -1085,8 +1089,8 @@ class UnconditionalFileItemDTOMixin:
img = Image.open(self.unconditional_path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.mask_path}")
print_acc(f"Error: {e}")
print_acc(f"Error loading image: {self.mask_path}")
img = img.convert('RGB')
w, h = img.size
@@ -1166,9 +1170,9 @@ class PoiFileItemDTOMixin:
with open(caption_path, 'r', encoding='utf-8') as f:
json_data = json.load(f)
if 'poi' not in json_data:
print(f"Warning: poi not found in caption file: {caption_path}")
print_acc(f"Warning: poi not found in caption file: {caption_path}")
if self.poi not in json_data['poi']:
print(f"Warning: poi not found in caption file: {caption_path}")
print_acc(f"Warning: poi not found in caption file: {caption_path}")
# poi has, x, y, width, height
# do full image if no poi
self.poi_x = 0
@@ -1242,8 +1246,8 @@ class PoiFileItemDTOMixin:
# now we have our random crop, but it may be smaller than resolution. Check and expand if needed
current_resolution = get_resolution(poi_width, poi_height)
except Exception as e:
print(f"Error: {e}")
print(f"Error getting resolution: {self.path}")
print_acc(f"Error: {e}")
print_acc(f"Error getting resolution: {self.path}")
raise e
return False
if current_resolution >= self.dataset_config.resolution:
@@ -1252,7 +1256,7 @@ class PoiFileItemDTOMixin:
else:
num_loops += 1
if num_loops > 100:
print(
print_acc(
f"Warning: poi bucketing looped too many times. This should not happen. Please report this issue.")
return False
@@ -1279,7 +1283,7 @@ class PoiFileItemDTOMixin:
if self.scale_to_width < self.crop_x + self.crop_width or self.scale_to_height < self.crop_y + self.crop_height:
# todo look into this. This still happens sometimes
print('size mismatch')
print_acc('size mismatch')
return True
@@ -1373,88 +1377,89 @@ class LatentCachingMixin:
self.latent_cache = {}
def cache_latents_all_latents(self: 'AiToolkitDataset'):
print(f"Caching latents for {self.dataset_path}")
# cache all latents to disk
to_disk = self.is_caching_latents_to_disk
to_memory = self.is_caching_latents_to_memory
with accelerator.main_process_first():
print_acc(f"Caching latents for {self.dataset_path}")
# cache all latents to disk
to_disk = self.is_caching_latents_to_disk
to_memory = self.is_caching_latents_to_memory
if to_disk:
print(" - Saving latents to disk")
if to_memory:
print(" - Keeping latents in memory")
# move sd items to cpu except for vae
self.sd.set_device_state_preset('cache_latents')
if to_disk:
print_acc(" - Saving latents to disk")
if to_memory:
print_acc(" - Keeping latents in memory")
# move sd items to cpu except for vae
self.sd.set_device_state_preset('cache_latents')
# use tqdm to show progress
i = 0
for file_item in tqdm(self.file_list, desc=f'Caching latents{" to disk" if to_disk else ""}'):
# set latent space version
if self.sd.model_config.latent_space_version is not None:
file_item.latent_space_version = self.sd.model_config.latent_space_version
elif self.sd.is_xl:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_v3:
file_item.latent_space_version = 'sd3'
elif self.sd.is_auraflow:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_flux:
file_item.latent_space_version = 'flux1'
elif self.sd.model_config.is_pixart_sigma:
file_item.latent_space_version = 'sdxl'
else:
file_item.latent_space_version = 'sd1'
file_item.is_caching_to_disk = to_disk
file_item.is_caching_to_memory = to_memory
file_item.latent_load_device = self.sd.device
# use tqdm to show progress
i = 0
for file_item in tqdm(self.file_list, desc=f'Caching latents{" to disk" if to_disk else ""}'):
# set latent space version
if self.sd.model_config.latent_space_version is not None:
file_item.latent_space_version = self.sd.model_config.latent_space_version
elif self.sd.is_xl:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_v3:
file_item.latent_space_version = 'sd3'
elif self.sd.is_auraflow:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_flux:
file_item.latent_space_version = 'flux1'
elif self.sd.model_config.is_pixart_sigma:
file_item.latent_space_version = 'sdxl'
else:
file_item.latent_space_version = 'sd1'
file_item.is_caching_to_disk = to_disk
file_item.is_caching_to_memory = to_memory
file_item.latent_load_device = self.sd.device
latent_path = file_item.get_latent_path(recalculate=True)
# check if it is saved to disk already
if os.path.exists(latent_path):
if to_memory:
# load it into memory
state_dict = load_file(latent_path, device='cpu')
file_item._encoded_latent = state_dict['latent'].to('cpu', dtype=self.sd.torch_dtype)
else:
# not saved to disk, calculate
# load the image first
file_item.load_and_process_image(self.transform, only_load_latents=True)
dtype = self.sd.torch_dtype
device = self.sd.device_torch
# add batch dimension
try:
imgs = file_item.tensor.unsqueeze(0).to(device, dtype=dtype)
latent = self.sd.encode_images(imgs).squeeze(0)
except Exception as e:
print(f"Error processing image: {file_item.path}")
print(f"Error: {str(e)}")
raise e
# save_latent
if to_disk:
state_dict = OrderedDict([
('latent', latent.clone().detach().cpu()),
])
# metadata
meta = get_meta_for_safetensors(file_item.get_latent_info_dict())
os.makedirs(os.path.dirname(latent_path), exist_ok=True)
save_file(state_dict, latent_path, metadata=meta)
latent_path = file_item.get_latent_path(recalculate=True)
# check if it is saved to disk already
if os.path.exists(latent_path):
if to_memory:
# load it into memory
state_dict = load_file(latent_path, device='cpu')
file_item._encoded_latent = state_dict['latent'].to('cpu', dtype=self.sd.torch_dtype)
else:
# not saved to disk, calculate
# load the image first
file_item.load_and_process_image(self.transform, only_load_latents=True)
dtype = self.sd.torch_dtype
device = self.sd.device_torch
# add batch dimension
try:
imgs = file_item.tensor.unsqueeze(0).to(device, dtype=dtype)
latent = self.sd.encode_images(imgs).squeeze(0)
except Exception as e:
print_acc(f"Error processing image: {file_item.path}")
print_acc(f"Error: {str(e)}")
raise e
# save_latent
if to_disk:
state_dict = OrderedDict([
('latent', latent.clone().detach().cpu()),
])
# metadata
meta = get_meta_for_safetensors(file_item.get_latent_info_dict())
os.makedirs(os.path.dirname(latent_path), exist_ok=True)
save_file(state_dict, latent_path, metadata=meta)
if to_memory:
# keep it in memory
file_item._encoded_latent = latent.to('cpu', dtype=self.sd.torch_dtype)
if to_memory:
# keep it in memory
file_item._encoded_latent = latent.to('cpu', dtype=self.sd.torch_dtype)
del imgs
del latent
del file_item.tensor
del imgs
del latent
del file_item.tensor
# flush(garbage_collect=False)
file_item.is_latent_cached = True
i += 1
# flush every 100
# if i % 100 == 0:
# flush()
# flush(garbage_collect=False)
file_item.is_latent_cached = True
i += 1
# flush every 100
# if i % 100 == 0:
# flush()
# restore device state
self.sd.restore_device_state()
# restore device state
self.sd.restore_device_state()
class CLIPCachingMixin:
@@ -1469,9 +1474,9 @@ class CLIPCachingMixin:
if not self.is_caching_clip_vision_to_disk:
return
with torch.no_grad():
print(f"Caching clip vision for {self.dataset_path}")
print_acc(f"Caching clip vision for {self.dataset_path}")
print(" - Saving clip to disk")
print_acc(" - Saving clip to disk")
# move sd items to cpu except for vae
self.sd.set_device_state_preset('cache_clip')
@@ -1512,7 +1517,7 @@ class CLIPCachingMixin:
self.clip_vision_num_unconditional_cache = 1
# cache unconditionals
print(f" - Caching {self.clip_vision_num_unconditional_cache} unconditional clip vision to disk")
print_acc(f" - Caching {self.clip_vision_num_unconditional_cache} unconditional clip vision to disk")
clip_vision_cache_path = os.path.join(self.dataset_config.clip_image_path, '_clip_vision_cache')
unconditional_paths = []

6
toolkit/print.py Normal file
View File

@@ -0,0 +1,6 @@
from toolkit.accelerator import get_accelerator
def print_acc(*args, **kwargs):
if get_accelerator().is_local_main_process:
print(*args, **kwargs)

View File

@@ -63,7 +63,9 @@ from huggingface_hub import hf_hub_download
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from optimum.quanto import freeze, qfloat8, quantize, QTensor, qint4
from toolkit.accelerator import get_accelerator, unwrap_model
from typing import TYPE_CHECKING
from toolkit.print import print_acc
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
@@ -130,18 +132,17 @@ class StableDiffusion:
noise_scheduler=None,
quantize_device=None,
):
self.accelerator = get_accelerator()
self.custom_pipeline = custom_pipeline
self.device = device
self.device = str(self.accelerator.device)
self.dtype = dtype
self.torch_dtype = get_torch_dtype(dtype)
self.device_torch = torch.device(self.device)
self.device_torch = self.accelerator.device
self.vae_device_torch = torch.device(self.device) if model_config.vae_device is None else torch.device(
model_config.vae_device)
self.vae_device_torch = self.accelerator.device
self.vae_torch_dtype = get_torch_dtype(model_config.vae_dtype)
self.te_device_torch = torch.device(self.device) if model_config.te_device is None else torch.device(
model_config.te_device)
self.te_device_torch = self.accelerator.device
self.te_torch_dtype = get_torch_dtype(model_config.te_dtype)
self.model_config = model_config
@@ -186,7 +187,7 @@ class StableDiffusion:
if self.is_flux or self.is_v3 or self.is_auraflow or isinstance(self.noise_scheduler, CustomFlowMatchEulerDiscreteScheduler):
self.is_flow_matching = True
self.quantize_device = quantize_device if quantize_device is not None else self.device
self.quantize_device = self.device_torch
self.low_vram = self.model_config.low_vram
# merge in and preview active with -1 weight
@@ -254,8 +255,8 @@ class StableDiffusion:
pipe.vae = pipe.vae.to(self.vae_device_torch, dtype=self.vae_torch_dtype)
if self.model_config.experimental_xl:
print("Experimental XL mode enabled")
print("Loading and injecting alt weights")
print_acc("Experimental XL mode enabled")
print_acc("Loading and injecting alt weights")
# load the mismatched weight and force it in
raw_state_dict = load_file(model_path)
replacement_weight = raw_state_dict['conditioner.embedders.1.model.text_projection'].clone()
@@ -265,17 +266,17 @@ class StableDiffusion:
# replace weight with mismatched weight
te1_state_dict['text_projection.weight'] = replacement_weight.to(self.device_torch, dtype=dtype)
flush()
print("Injecting alt weights")
print_acc("Injecting alt weights")
elif self.model_config.is_v3:
if self.custom_pipeline is not None:
pipln = self.custom_pipeline
else:
pipln = StableDiffusion3Pipeline
print("Loading SD3 model")
print_acc("Loading SD3 model")
# assume it is the large model
base_model_path = "stabilityai/stable-diffusion-3.5-large"
print("Loading transformer")
print_acc("Loading transformer")
subfolder = 'transformer'
transformer_path = model_path
# check if HF_DATASETS_OFFLINE or TRANSFORMERS_OFFLINE is set
@@ -298,7 +299,7 @@ class StableDiffusion:
)
if not self.low_vram:
# for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu
transformer.to(torch.device(self.quantize_device), dtype=dtype)
transformer.to(self.quantize_device, dtype=dtype)
flush()
if self.model_config.lora_path is not None:
@@ -306,7 +307,7 @@ class StableDiffusion:
if self.model_config.quantize:
quantization_type = qfloat8
print("Quantizing transformer")
print_acc("Quantizing transformer")
quantize(transformer, weights=quantization_type)
freeze(transformer)
transformer.to(self.device_torch)
@@ -314,11 +315,11 @@ class StableDiffusion:
transformer.to(self.device_torch, dtype=dtype)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
print("Loading vae")
print_acc("Loading vae")
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
flush()
print("Loading t5")
print_acc("Loading t5")
tokenizer_3 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_3", torch_dtype=dtype)
text_encoder_3 = T5EncoderModel.from_pretrained(
base_model_path,
@@ -330,7 +331,7 @@ class StableDiffusion:
flush()
if self.model_config.quantize:
print("Quantizing T5")
print_acc("Quantizing T5")
quantize(text_encoder_3, weights=qfloat8)
freeze(text_encoder_3)
flush()
@@ -354,7 +355,7 @@ class StableDiffusion:
**load_args
)
except Exception as e:
print(f"Error loading from pretrained: {e}")
print_acc(f"Error loading from pretrained: {e}")
raise e
else:
@@ -529,10 +530,10 @@ class StableDiffusion:
tokenizer = pipe.tokenizer
elif self.model_config.is_flux:
print("Loading Flux model")
print_acc("Loading Flux model")
# base_model_path = "black-forest-labs/FLUX.1-schnell"
base_model_path = self.model_config.name_or_path_original
print("Loading transformer")
print_acc("Loading transformer")
subfolder = 'transformer'
transformer_path = model_path
local_files_only = False
@@ -559,7 +560,7 @@ class StableDiffusion:
if not self.low_vram:
# for low v ram, we leave it on the cpu. Quantizes slower, but allows training on primary gpu
transformer.to(torch.device(self.quantize_device), dtype=dtype)
transformer.to(self.quantize_device, dtype=dtype)
flush()
if self.model_config.assistant_lora_path is not None or self.model_config.inference_lora_path is not None:
@@ -581,7 +582,7 @@ class StableDiffusion:
load_lora_path, "pytorch_lora_weights.safetensors"
)
elif not os.path.exists(load_lora_path):
print(f"Grabbing lora from the hub: {load_lora_path}")
print_acc(f"Grabbing lora from the hub: {load_lora_path}")
new_lora_path = hf_hub_download(
load_lora_path,
filename="pytorch_lora_weights.safetensors"
@@ -604,7 +605,7 @@ class StableDiffusion:
self.model_config.lora_path = self.model_config.assistant_lora_path
if self.model_config.lora_path is not None:
print("Fusing in LoRA")
print_acc("Fusing in LoRA")
# need the pipe for peft
pipe: FluxPipeline = FluxPipeline(
scheduler=None,
@@ -635,7 +636,7 @@ class StableDiffusion:
# double blocks
transformer.transformer_blocks = transformer.transformer_blocks.to(
torch.device(self.quantize_device), dtype=dtype
self.quantize_device, dtype=dtype
)
pipe.load_lora_weights(double_transformer_lora, adapter_name=f"lora1_double")
pipe.fuse_lora()
@@ -646,7 +647,7 @@ class StableDiffusion:
# single blocks
transformer.single_transformer_blocks = transformer.single_transformer_blocks.to(
torch.device(self.quantize_device), dtype=dtype
self.quantize_device, dtype=dtype
)
pipe.load_lora_weights(single_transformer_lora, adapter_name=f"lora1_single")
pipe.fuse_lora()
@@ -674,7 +675,7 @@ class StableDiffusion:
# patch the state dict method
patch_dequantization_on_save(transformer)
quantization_type = qfloat8
print("Quantizing transformer")
print_acc("Quantizing transformer")
quantize(transformer, weights=quantization_type, **self.model_config.quantize_kwargs)
freeze(transformer)
transformer.to(self.device_torch)
@@ -684,11 +685,11 @@ class StableDiffusion:
flush()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
print("Loading vae")
print_acc("Loading vae")
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
flush()
print("Loading t5")
print_acc("Loading t5")
tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2",
torch_dtype=dtype)
@@ -697,17 +698,17 @@ class StableDiffusion:
flush()
if self.model_config.quantize_te:
print("Quantizing T5")
print_acc("Quantizing T5")
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
flush()
print("Loading clip")
print_acc("Loading clip")
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype)
text_encoder.to(self.device_torch, dtype=dtype)
print("making pipe")
print_acc("making pipe")
pipe: FluxPipeline = FluxPipeline(
scheduler=scheduler,
text_encoder=text_encoder,
@@ -720,7 +721,7 @@ class StableDiffusion:
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
print("preparing")
print_acc("preparing")
text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
@@ -836,7 +837,7 @@ class StableDiffusion:
self.is_loaded = True
if self.model_config.assistant_lora_path is not None:
print("Loading assistant lora")
print_acc("Loading assistant lora")
self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path(
self.model_config.assistant_lora_path, self)
@@ -846,7 +847,7 @@ class StableDiffusion:
self.assistant_lora.is_active = False
if self.model_config.inference_lora_path is not None:
print("Loading inference lora")
print_acc("Loading inference lora")
self.assistant_lora: 'LoRASpecialNetwork' = load_assistant_lora_from_path(
self.model_config.inference_lora_path, self)
# disable during training
@@ -917,11 +918,12 @@ class StableDiffusion:
sampler=None,
pipeline: Union[None, StableDiffusionPipeline, StableDiffusionXLPipeline] = None,
):
network = unwrap_model(self.network)
merge_multiplier = 1.0
flush()
# if using assistant, unfuse it
if self.model_config.assistant_lora_path is not None:
print("Unloading assistant lora")
print_acc("Unloading assistant lora")
if self.invert_assistant_lora:
self.assistant_lora.is_active = True
# move weights on to the device
@@ -930,18 +932,17 @@ class StableDiffusion:
self.assistant_lora.is_active = False
if self.model_config.inference_lora_path is not None:
print("Loading inference lora")
print_acc("Loading inference lora")
self.assistant_lora.is_active = True
# move weights on to the device
self.assistant_lora.force_to(self.device_torch, self.torch_dtype)
if self.network is not None:
self.network.eval()
network = self.network
if network is not None:
network.eval()
# check if we have the same network weight for all samples. If we do, we can merge in th
# the network to drastically speed up inference
unique_network_weights = set([x.network_multiplier for x in image_configs])
if len(unique_network_weights) == 1 and self.network.can_merge_in:
if len(unique_network_weights) == 1 and network.can_merge_in:
can_merge_in = True
merge_multiplier = unique_network_weights.pop()
network.merge_in(merge_weight=merge_multiplier)
@@ -1119,15 +1120,15 @@ class StableDiffusion:
flush()
start_multiplier = 1.0
if self.network is not None:
start_multiplier = self.network.multiplier
if network is not None:
start_multiplier = network.multiplier
# pipeline.to(self.device_torch)
with network:
with torch.no_grad():
if self.network is not None:
assert self.network.is_active
if network is not None:
assert network.is_active
for i in tqdm(range(len(image_configs)), desc=f"Generating Images", leave=False):
gen_config = image_configs[i]
@@ -1164,8 +1165,8 @@ class StableDiffusion:
validation_image = validation_image.unsqueeze(0)
self.adapter.set_reference_images(validation_image)
if self.network is not None:
self.network.multiplier = gen_config.network_multiplier
if network is not None:
network.multiplier = gen_config.network_multiplier
torch.manual_seed(gen_config.seed)
torch.cuda.manual_seed(gen_config.seed)
@@ -1332,6 +1333,12 @@ class StableDiffusion:
**extra
).images[0]
else:
# Fix a bug in diffusers/torch
def callback_on_step_end(pipe, i, t, callback_kwargs):
latents = callback_kwargs["latents"]
if latents.dtype != self.unet.dtype:
latents = latents.to(self.unet.dtype)
return {"latents": latents}
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
@@ -1343,6 +1350,7 @@ class StableDiffusion:
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
callback_on_step_end=callback_on_step_end,
**extra
).images[0]
elif self.is_pixart:
@@ -1448,9 +1456,9 @@ class StableDiffusion:
torch.cuda.set_rng_state(cuda_rng_state)
self.restore_device_state()
if self.network is not None:
self.network.train()
self.network.multiplier = start_multiplier
if network is not None:
network.train()
network.multiplier = start_multiplier
self.unet.to(self.device_torch, dtype=self.torch_dtype)
if network.is_merged_in:
@@ -1459,7 +1467,7 @@ class StableDiffusion:
# refuse loras
if self.model_config.assistant_lora_path is not None:
print("Loading assistant lora")
print_acc("Loading assistant lora")
if self.invert_assistant_lora:
self.assistant_lora.is_active = False
# move weights off the device
@@ -1468,7 +1476,7 @@ class StableDiffusion:
self.assistant_lora.is_active = True
if self.model_config.inference_lora_path is not None:
print("Unloading inference lora")
print_acc("Unloading inference lora")
self.assistant_lora.is_active = False
# move weights off the device
self.assistant_lora.force_to('cpu', self.torch_dtype)
@@ -1867,6 +1875,11 @@ class StableDiffusion:
bypass_flux_guidance(self.unet)
cast_dtype = self.unet.dtype
# changes from orig implementation
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
img_ids = img_ids[0]
# with torch.amp.autocast(device_type='cuda', dtype=cast_dtype):
noise_pred = self.unet(
hidden_states=latent_model_input_packed.to(self.device_torch, cast_dtype), # [1, 4096, 64]
@@ -2513,7 +2526,7 @@ class StableDiffusion:
params.append(named_params[diffusers_key])
param_data = {"params": params, "lr": unet_lr}
trainable_parameters.append(param_data)
print(f"Found {len(params)} trainable parameter in unet")
print_acc(f"Found {len(params)} trainable parameter in unet")
if text_encoder:
named_params = self.named_parameters(vae=False, unet=False, text_encoder=text_encoder, state_dict_keys=True)
@@ -2526,7 +2539,7 @@ class StableDiffusion:
param_data = {"params": params, "lr": text_encoder_lr}
trainable_parameters.append(param_data)
print(f"Found {len(params)} trainable parameter in text encoder")
print_acc(f"Found {len(params)} trainable parameter in text encoder")
if refiner:
named_params = self.named_parameters(vae=False, unet=False, text_encoder=False, refiner=True,
@@ -2541,7 +2554,7 @@ class StableDiffusion:
param_data = {"params": params, "lr": refiner_lr}
trainable_parameters.append(param_data)
print(f"Found {len(params)} trainable parameter in refiner")
print_acc(f"Found {len(params)} trainable parameter in refiner")
return trainable_parameters