Added a config file for full finetuning flex. Added a lora extraction script for flex

This commit is contained in:
Jaret Burkett
2025-01-20 10:09:01 -07:00
parent 4c8a9e1b88
commit 6a8e3d8610
2 changed files with 347 additions and 0 deletions

View File

@@ -0,0 +1,103 @@
---
# This configuration requires 48GB of VRAM or more to operate
job: extension
config:
# this name will be the folder and filename name
name: "my_first_flex_finetune_v1"
process:
- type: 'sd_trainer'
# root folder to save training sessions/samples/weights
training_folder: "output"
# uncomment to see performance stats in the terminal every N steps
# performance_log_every: 1000
device: cuda:0
# if a trigger word is specified, it will be added to captions of training data if it does not already exist
# alternatively, in your captions you can add [trigger] and it will be replaced with the trigger word
# trigger_word: "p3r5on"
save:
dtype: bf16 # precision to save
save_every: 250 # save every this many steps
max_step_saves_to_keep: 2 # how many intermittent saves to keep
save_format: 'diffusers' # 'diffusers'
datasets:
# datasets are a folder of images. captions need to be txt files with the same name as the image
# for instance image2.jpg and image2.txt. Only jpg, jpeg, and png are supported currently
# images will automatically be resized and bucketed into the resolution specified
# on windows, escape back slashes with another backslash so
# "C:\\path\\to\\images\\folder"
- folder_path: "/path/to/images/folder"
caption_ext: "txt"
caption_dropout_rate: 0.05 # will drop out the caption 5% of time
shuffle_tokens: false # shuffle caption order, split by commas
# cache_latents_to_disk: true # leave this true unless you know what you're doing
resolution: [ 512, 768, 1024 ] # flex enjoys multiple resolutions
train:
batch_size: 1
# IMPORTANT! For Flex, you must bypass the guidance embedder during training
bypass_guidance_embedding: true
# can be 'sigmoid', 'linear', or 'lognorm_blend'
timestep_type: 'sigmoid'
steps: 2000 # total number of steps to train 500 - 4000 is a good range
gradient_accumulation: 1
train_unet: true
train_text_encoder: false # probably won't work with flex
gradient_checkpointing: true # need the on unless you have a ton of vram
noise_scheduler: "flowmatch" # for training only
optimizer: "adafactor"
lr: 3e-5
# Paramiter swapping can reduce vram requirements. Set factor from 1.0 to 0.0.
# 0.1 is 10% of paramiters active at easc step. Only works with adafactor
# do_paramiter_swapping: true
# paramiter_swapping_factor: 0.9
# uncomment this to skip the pre training sample
# skip_first_sample: true
# uncomment to completely disable sampling
# disable_sampling: true
# ema will smooth out learning, but could slow it down. Recommended to leave on if you have the vram
ema_config:
use_ema: true
ema_decay: 0.99
# will probably need this if gpu supports it for flex, other dtypes may not work correctly
dtype: bf16
model:
# huggingface model name or path
name_or_path: "ostris/Flex.1-alpha"
is_flux: true # flex is flux architecture
# full finetuning quantized models is a crapshoot and results in subpar outputs
# quantize: true
# you can quantize just the T5 text encoder here to save vram
quantize_te: true
sample:
sampler: "flowmatch" # must match train.noise_scheduler
sample_every: 250 # sample every this many steps
width: 1024
height: 1024
prompts:
# you can add [trigger] to the prompts here and it will be replaced with the trigger word
# - "[trigger] holding a sign that says 'I LOVE PROMPTS!'"\
- "woman with red hair, playing chess at the park, bomb going off in the background"
- "a woman holding a coffee cup, in a beanie, sitting at a cafe"
- "a horse is a DJ at a night club, fish eye lens, smoke machine, lazer lights, holding a martini"
- "a man showing off his cool new t shirt at the beach, a shark is jumping out of the water in the background"
- "a bear building a log cabin in the snow covered mountains"
- "woman playing the guitar, on stage, singing a song, laser lights, punk rocker"
- "hipster man with a beard, building a chair, in a wood shop"
- "photo of a man, white background, medium shot, modeling clothing, studio lighting, white backdrop"
- "a man holding a sign that says, 'this is a sign'"
- "a bulldog, in a post apocalyptic world, with a shotgun, in a leather jacket, in a desert, with a motorcycle"
neg: "" # not used on flex
seed: 42
walk_seed: true
guidance_scale: 4
sample_steps: 25
# you can add any additional meta info here. [name] is replaced with config name at top
meta:
name: "[name]"
version: '1.0'

View File

@@ -0,0 +1,244 @@
import os
from tqdm import tqdm
import argparse
from collections import OrderedDict
parser = argparse.ArgumentParser(description="Extract LoRA from Flex")
parser.add_argument("--base", type=str, default="ostris/Flex.1-alpha", help="Base model path")
parser.add_argument("--tuned", type=str, required=True, help="Tuned model path")
parser.add_argument("--output", type=str, required=True, help="Output path for lora")
parser.add_argument("--rank", type=int, default=32, help="LoRA rank for extraction")
parser.add_argument("--gpu", type=int, default=0, help="GPU to process extraction")
args = parser.parse_args()
if True:
# set cuda environment variable
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
import torch
from safetensors.torch import load_file, save_file
from lycoris.utils import extract_linear, extract_conv, make_sparse
from diffusers import FluxTransformer2DModel
base = args.base
tuned = args.tuned
output_path = args.output
dim = args.rank
os.makedirs(os.path.dirname(output_path), exist_ok=True)
state_dict_base = {}
state_dict_tuned = {}
output_dict = {}
@torch.no_grad()
def extract_diff(
base_unet,
db_unet,
mode="fixed",
linear_mode_param=0,
conv_mode_param=0,
extract_device="cpu",
use_bias=False,
sparsity=0.98,
# small_conv=True,
small_conv=False,
):
UNET_TARGET_REPLACE_MODULE = [
"Linear",
"Conv2d",
"LayerNorm",
"GroupNorm",
"GroupNorm32",
"LoRACompatibleLinear",
"LoRACompatibleConv"
]
LORA_PREFIX_UNET = "transformer"
def make_state_dict(
prefix,
root_module: torch.nn.Module,
target_module: torch.nn.Module,
target_replace_modules,
):
loras = {}
temp = {}
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
temp[name] = module
for name, module in tqdm(
list((n, m) for n, m in target_module.named_modules() if n in temp)
):
weights = temp[name]
lora_name = prefix + "." + name
# lora_name = lora_name.replace(".", "_")
layer = module.__class__.__name__
if 'transformer_blocks' not in lora_name:
continue
if layer in {
"Linear",
"Conv2d",
"LayerNorm",
"GroupNorm",
"GroupNorm32",
"Embedding",
"LoRACompatibleLinear",
"LoRACompatibleConv"
}:
root_weight = module.weight
try:
if torch.allclose(root_weight, weights.weight):
continue
except:
continue
else:
continue
module = module.to(extract_device, torch.float32)
weights = weights.to(extract_device, torch.float32)
if mode == "full":
decompose_mode = "full"
elif layer == "Linear":
weight, decompose_mode = extract_linear(
(root_weight - weights.weight),
mode,
linear_mode_param,
device=extract_device,
)
if decompose_mode == "low rank":
extract_a, extract_b, diff = weight
elif layer == "Conv2d":
is_linear = root_weight.shape[2] == 1 and root_weight.shape[3] == 1
weight, decompose_mode = extract_conv(
(root_weight - weights.weight),
mode,
linear_mode_param if is_linear else conv_mode_param,
device=extract_device,
)
if decompose_mode == "low rank":
extract_a, extract_b, diff = weight
if small_conv and not is_linear and decompose_mode == "low rank":
dim = extract_a.size(0)
(extract_c, extract_a, _), _ = extract_conv(
extract_a.transpose(0, 1),
"fixed",
dim,
extract_device,
True,
)
extract_a = extract_a.transpose(0, 1)
extract_c = extract_c.transpose(0, 1)
loras[f"{lora_name}.lora_mid.weight"] = (
extract_c.detach().cpu().contiguous().half()
)
diff = (
(
root_weight
- torch.einsum(
"i j k l, j r, p i -> p r k l",
extract_c,
extract_a.flatten(1, -1),
extract_b.flatten(1, -1),
)
)
.detach()
.cpu()
.contiguous()
)
del extract_c
else:
module = module.to("cpu")
weights = weights.to("cpu")
continue
if decompose_mode == "low rank":
loras[f"{lora_name}.lora_A.weight"] = (
extract_a.detach().cpu().contiguous().half()
)
loras[f"{lora_name}.lora_B.weight"] = (
extract_b.detach().cpu().contiguous().half()
)
# loras[f"{lora_name}.alpha"] = torch.Tensor([extract_a.shape[0]]).half()
if use_bias:
diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
indices = sparse_diff.indices().to(torch.int16)
values = sparse_diff.values().half()
loras[f"{lora_name}.bias_indices"] = indices
loras[f"{lora_name}.bias_values"] = values
loras[f"{lora_name}.bias_size"] = torch.tensor(diff.shape).to(
torch.int16
)
del extract_a, extract_b, diff
elif decompose_mode == "full":
if "Norm" in layer:
w_key = "w_norm"
b_key = "b_norm"
else:
w_key = "diff"
b_key = "diff_b"
weight_diff = module.weight - weights.weight
loras[f"{lora_name}.{w_key}"] = (
weight_diff.detach().cpu().contiguous().half()
)
if getattr(weights, "bias", None) is not None:
bias_diff = module.bias - weights.bias
loras[f"{lora_name}.{b_key}"] = (
bias_diff.detach().cpu().contiguous().half()
)
else:
raise NotImplementedError
module = module.to("cpu", torch.bfloat16)
weights = weights.to("cpu", torch.bfloat16)
return loras
all_loras = {}
all_loras |= make_state_dict(
LORA_PREFIX_UNET,
base_unet,
db_unet,
UNET_TARGET_REPLACE_MODULE,
)
del base_unet, db_unet
if torch.cuda.is_available():
torch.cuda.empty_cache()
all_lora_name = set()
for k in all_loras:
lora_name, weight = k.rsplit(".", 1)
all_lora_name.add(lora_name)
print(len(all_lora_name))
return all_loras
# find all the .safetensors files and load them
print("Loading Base")
base_model = FluxTransformer2DModel.from_pretrained(base, subfolder="transformer", torch_dtype=torch.bfloat16)
print("Loading Tuned")
tuned_model = FluxTransformer2DModel.from_pretrained(tuned, subfolder="transformer", torch_dtype=torch.bfloat16)
output_dict = extract_diff(
base_model,
tuned_model,
mode="fixed",
linear_mode_param=dim,
conv_mode_param=dim,
extract_device="cuda",
use_bias=False,
sparsity=0.98,
small_conv=False,
)
meta = OrderedDict()
meta['format'] = 'pt'
save_file(output_dict, output_path, metadata=meta)
print("Done")