Complete reqork of how slider training works and optimized it to hell. Can run entire algorythm in 1 batch now with less VRAM consumption than a quarter of it used to take

This commit is contained in:
Jaret Burkett
2023-08-05 18:46:08 -06:00
parent 7e4e660663
commit 8c90fa86c6
10 changed files with 944 additions and 379 deletions

View File

@@ -170,18 +170,27 @@ Just went in and out. It is much worse on smaller faces than shown here.
## Change Log
#### 2023-08-05
- Huge memory rework and slider rework. Slider training is better thant ever with no more
ram spikes. I also made it so all 4 parts of the slider algorythm run in one batch so they share gradient
accumulation. This makes it much faster and more stable.
- Updated the example config to be something more practical and more updated to current methods. It is now
a detail slide and shows how to train one without a subject. 512x512 slider training for 1.5 should work on
6GB gpu now. Will test soon to verify.
#### 2021-10-20
- Windows support bug fixes
- Extensions! Added functionality to make and share custom extensions for training, merging, whatever.
check out the example in the `extensions` folder. Read more about that above.
- Model Merging, provided via the example extension.
#### 2021-08-03
#### 2023-08-03
Another big refactor to make SD more modular.
Made batch image generation script
#### 2021-08-01
#### 2023-08-01
Major changes and update. New LoRA rescale tool, look above for details. Added better metadata so
Automatic1111 knows what the base model is. Added some experiments and a ton of updates. This thing is still unstable
at the moment, so hopefully there are not breaking changes.
@@ -199,7 +208,7 @@ encoders to the model as well as a few more entirely separate diffusion networks
training without every experimental new paper added to it. The KISS principal.
#### 2021-07-30
#### 2023-07-30
Added "anchors" to the slider trainer. This allows you to set a prompt that will be used as a
regularizer. You can set the network multiplier to force spread consistency at high weights

View File

@@ -7,7 +7,7 @@ job: train
config:
# the name will be used to create a folder in the output folder
# it will also replace any [name] token in the rest of this config
name: pet_slider_v1
name: detail_slider_v1
# folder will be created with name above in folder below
# it can be relative to the project root or absolute
training_folder: "output/LoRA"
@@ -24,7 +24,7 @@ config:
type: "lierla"
# rank / dim of the network. Bigger is not always better. Especially for sliders. 8 is good
rank: 8
alpha: 1.0 # just leave it
alpha: 4 # Do about half of rank
# training config
train:
@@ -33,7 +33,7 @@ config:
# how many steps to train. More is not always better. I rarely go over 1000
steps: 500
# I have had good results with 4e-4 to 1e-4 at 500 steps
lr: 1e-4
lr: 2e-4
# enables gradient checkpoint, saves vram, leave it on
gradient_checkpointing: true
# train the unet. I recommend leaving this true
@@ -43,6 +43,7 @@ config:
# not the description of it (text encoder)
train_text_encoder: false
# just leave unless you know what you are doing
# also supports "dadaptation" but set lr to 1 if you use that,
# but it learns too fast and I don't recommend it
@@ -53,6 +54,7 @@ config:
# while training. Just leave it
max_denoising_steps: 40
# works great at 1. I do 1 even with my 4090.
# higher may not work right with newer single batch stacking code anyway
batch_size: 1
# bf16 works best if your GPU supports it (modern)
dtype: bf16 # fp32, bf16, fp16
@@ -69,12 +71,17 @@ config:
name_or_path: "runwayml/stable-diffusion-v1-5"
is_v2: false # for v2 models
is_v_pred: false # for v-prediction models (most v2 models)
# has some issues with the dual text encoder and the way we train sliders
# it works bit weights need to probably be higher to see it.
is_xl: false # for SDXL models
# saving config
save:
dtype: float16 # precision to save. I recommend float16
save_every: 50 # save every this many steps
# this will remove step counts more than this number
# allows you to save more often in case of a crash without filling up your drive
max_step_saves_to_keep: 2
# sampling config
sample:
@@ -92,21 +99,22 @@ config:
# --m [number] # network multiplier. LoRA weight. -3 for the negative slide, 3 for the positive
# slide are good tests. will inherit sample.network_multiplier if not set
# --n [string] # negative prompt, will inherit sample.neg if not set
# Only 75 tokens allowed currently
prompts: # our example is an animal slider, neg: dog, pos: cat
- "a golden retriever --m -5"
- "a golden retriever --m -3"
- "a golden retriever --m 3"
- "a golden retriever --m 5"
- "calico cat --m -5"
- "calico cat --m -3"
- "calico cat --m 3"
- "calico cat --m 5"
- "an elephant --m -5"
- "an elephant --m -3"
- "an elephant --m 3"
- "an elephant --m 5"
# I like to do a wide positive and negative spread so I can see a good range and stop
# early if the network is braking down
prompts:
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m -5"
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m -3"
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m 3"
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m 5"
- "a golden retriever sitting on a leather couch, --m -5"
- "a golden retriever sitting on a leather couch --m -3"
- "a golden retriever sitting on a leather couch --m 3"
- "a golden retriever sitting on a leather couch --m 5"
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m -5"
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m -3"
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m 3"
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m 5"
# negative prompt used on all prompts above as default if they don't have one
neg: "cartoon, fake, drawing, illustration, cgi, animated, anime, monochrome"
# seed for sampling. 42 is the answer for everything
@@ -135,11 +143,16 @@ config:
# resolutions to train on. [ width, height ]. This is less important for sliders
# as we are not teaching the model anything it doesn't already know
# but must be a size it understands [ 512, 512 ] for sd_v1.5 and [ 768, 768 ] for sd_v2.1
# and [ 1024, 1024 ] for sd_xl
# you can do as many as you want here
resolutions:
- [ 512, 512 ]
# - [ 512, 768 ]
# - [ 768, 768 ]
# slider training uses 4 combined steps for a single round. This will do it in one gradient
# step. It is highly optimized and shouldn't take anymore vram than doing without it,
# since we break down batches for gradient accumulation now. so just leave it on.
batch_full_slide: true
# These are the concepts to train on. You can do as many as you want here,
# but they can conflict outweigh each other. Other than experimenting, I recommend
# just doing one for good results
@@ -150,7 +163,9 @@ config:
# a keyword necessarily but what the model understands the concept to represent.
# "person" will affect men, women, children, etc but will not affect cats, dogs, etc
# it is the models base general understanding of the concept and everything it represents
- target_class: "animal"
# you can leave it blank to affect everything. In this example, we are adjusting
# detail, so we will leave it blank to affect everything
- target_class: ""
# positive is the prompt for the positive side of the slider.
# It is the concept that will be excited and amplified in the model when we slide the slider
# to the positive side and forgotten / inverted when we slide
@@ -158,33 +173,44 @@ config:
# the prompt. You want it to be the extreme of what you want to train on. For example,
# if you want to train on fat people, you would use "an extremely fat, morbidly obese person"
# as the prompt. Not just "fat person"
positive: "cat"
# max 75 tokens for now
positive: "high detail, 8k, intricate, detailed, high resolution, high res, high quality"
# negative is the prompt for the negative side of the slider and works the same as positive
# it does not necessarily work the same as a negative prompt when generating images
negative: "dog"
# these need to be polar opposites.
# max 76 tokens for now
negative: "blurry, boring, fuzzy, low detail, low resolution, low res, low quality"
# the loss for this target is multiplied by this number.
# if you are doing more than one target it may be good to set less important ones
# to a lower number like 0.1 so they dont outweigh the primary target
# to a lower number like 0.1 so they don't outweigh the primary target
weight: 1.0
# anchors are prompts that wer try to hold on to while training the slider
# you want these to generate an image very similar to the target_class
# without directly overlapping it. For example, if you are training on a person smiling,
# you would use "a person with a face mask" as an anchor. It is a person, the image is the same
# regardless if they are smiling or not
anchors:
# only positive prompt for now
- prompt: "a woman"
neg_prompt: "animal"
# the multiplier applied to the LoRA when this is run.
# higher will give it more weight but also help keep the lora from collapsing
multiplier: 8.0
- prompt: "a man"
neg_prompt: "animal"
multiplier: 8.0
- prompt: "a person"
neg_prompt: "animal"
multiplier: 8.0
# anchors are prompts that we will try to hold on to while training the slider
# these are NOT necessary and can prevent the slider from converging if not done right
# leave them off if you are having issues, but they can help lock the network
# on certain concepts to help prevent catastrophic forgetting
# you want these to generate an image that is not your target_class, but close to it
# is fine as long as it does not directly overlap it.
# For example, if you are training on a person smiling,
# you could use "a person with a face mask" as an anchor. It is a person, the image is the same
# regardless if they are smiling or not, however, the closer the concept is to the target_class
# the less the multiplier needs to be. Keep multipliers less than 1.0 for anchors usually
# for close concepts, you want to be closer to 0.1 or 0.2
# these will slow down training. I am leaving them off for the demo
# anchors:
# - prompt: "a woman"
# neg_prompt: "animal"
# # the multiplier applied to the LoRA when this is run.
# # higher will give it more weight but also help keep the lora from collapsing
# multiplier: 1.0
# - prompt: "a man"
# neg_prompt: "animal"
# multiplier: 1.0
# - prompt: "a person"
# neg_prompt: "animal"
# multiplier: 1.0
# You can put any information you want here, and it will be saved in the model.
# The below is an example, but you can put your grocery list in it if you want.

View File

@@ -3,6 +3,6 @@ from collections import OrderedDict
v = OrderedDict()
v["name"] = "ai-toolkit"
v["repo"] = "https://github.com/ostris/ai-toolkit"
v["version"] = "0.0.3"
v["version"] = "0.0.4"
software_meta = v

View File

@@ -242,6 +242,12 @@ class BaseSDTrainProcess(BaseTrainProcess):
unet.enable_xformers_memory_efficient_attention()
if self.train_config.gradient_checkpointing:
unet.enable_gradient_checkpointing()
# if isinstance(text_encoder, list):
# for te in text_encoder:
# te.enable_gradient_checkpointing()
# else:
# text_encoder.enable_gradient_checkpointing()
unet.to(self.device_torch, dtype=dtype)
unet.requires_grad_(False)
unet.eval()
@@ -281,6 +287,9 @@ class BaseSDTrainProcess(BaseTrainProcess):
default_lr=self.train_config.lr
)
if self.train_config.gradient_checkpointing:
self.network.enable_gradient_checkpointing()
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")

View File

@@ -3,12 +3,14 @@
import random
from collections import OrderedDict
import os
from typing import Optional
from typing import Optional, Union
from safetensors.torch import save_file, load_file
import torch.utils.checkpoint as cp
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.layers import CheckpointGradients
from toolkit.paths import REPOS_ROOT
import sys
@@ -16,88 +18,21 @@ from toolkit.stable_diffusion_model import PromptEmbeds
from toolkit.train_tools import get_torch_dtype
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
EncodedPromptPair, ACTION_TYPES_SLIDER, \
EncodedAnchor, concat_prompt_pairs, \
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
split_prompt_pairs
import torch
from .BaseSDTrainProcess import BaseSDTrainProcess
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
def flush():
torch.cuda.empty_cache()
gc.collect()
class EncodedPromptPair:
def __init__(
self,
target_class,
target_class_with_neutral,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
empty_prompt,
both_targets,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
):
self.target_class = target_class
self.target_class_with_neutral = target_class_with_neutral
self.positive_target = positive_target
self.positive_target_with_neutral = positive_target_with_neutral
self.negative_target = negative_target
self.negative_target_with_neutral = negative_target_with_neutral
self.neutral = neutral
self.empty_prompt = empty_prompt
self.both_targets = both_targets
self.multiplier = multiplier
self.action: int = action
self.weight = weight
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.target_class = self.target_class.to(*args, **kwargs)
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
class TrainSliderProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
@@ -110,6 +45,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
# keep track of prompt chunk size
self.prompt_chunk_size = 1
def before_model_load(self):
pass
@@ -137,36 +74,12 @@ class TrainSliderProcess(BaseSDTrainProcess):
# get encoded latents for our prompts
with torch.no_grad():
if self.slider_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.slider_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
# list of neutrals. Can come from file or be empty
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
for neutral in tqdm(neutral_list, desc="Encoding prompts", leave=False):
# build the prompts to cache
prompts_to_cache = []
for neutral in neutral_list:
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
@@ -177,123 +90,41 @@ class TrainSliderProcess(BaseSDTrainProcess):
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets
f"{target.negative} {target.positive}", # both targets reverse
]
for p in prompt_list:
# build the cache
if cache[p] is None:
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
prompts_to_cache += prompt_list
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
# remove duplicates
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
both = not erase_negative and not enhance_positive
if erase_negative and enhance_positive:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if self.slider_config.prompt_tensors:
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
dtype=get_torch_dtype(
'fp16'))
save_file(state_dict, self.slider_config.prompt_tensors)
# encode them
cache = encode_prompts_to_cache(
prompt_list=prompts_to_cache,
sd=self.sd,
cache=cache,
prompt_tensor_file=self.slider_config.prompt_tensors
)
prompt_pairs = []
for neutral in tqdm(neutral_list, desc="Encoding prompts", leave=False):
prompt_batches = []
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
for target in self.slider_config.targets:
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
prompt_pair_batch = build_prompt_pair_batch_from_cache(
cache=cache,
target=target,
neutral=neutral,
both = not erase_negative and not enhance_positive
if both or erase_negative:
print("Encoding erase negative")
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
print("Encoding enhance positive")
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
# if both or enhance_positive:
if both:
print("Encoding erase positive (inverse)")
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
# if both or erase_negative:
if both:
print("Encoding enhance negative (inverse)")
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
both_targets=cache[f"{target.positive} {target.negative}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
)
if self.slider_config.batch_full_slide:
# concat the prompt pairs
# this allows us to run the entire 4 part process in one shot (for slider)
self.prompt_chunk_size = 4
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
prompt_pairs += [concat_prompt_pair_batch]
else:
self.prompt_chunk_size = 1
# do them one at a time (probably not necessary after new optimizations)
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
# setup anchors
anchor_pairs = []
@@ -306,14 +137,27 @@ class TrainSliderProcess(BaseSDTrainProcess):
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_pairs += [
anchor_batch = []
# we get the prompt pair multiplier from first prompt pair
# since they are all the same. We need to match their network polarity
prompt_pair_multipliers = prompt_pairs[0].multiplier_list
for prompt_multiplier in prompt_pair_multipliers:
# match the network multiplier polarity
anchor_scalar = 1.0 if prompt_multiplier > 0 else -1.0
anchor_batch += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
multiplier=anchor.multiplier * anchor_scalar
)
]
anchor_pairs += [
concat_anchors(anchor_batch).to('cpu')
]
if len(anchor_pairs) > 0:
self.anchor_pairs = anchor_pairs
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
@@ -324,17 +168,13 @@ class TrainSliderProcess(BaseSDTrainProcess):
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
# self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get random multiplier between 1 and 3
rand_weight = 1
# rand_weight = torch.rand((1,)).item() * 2 + 1
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
@@ -346,11 +186,10 @@ class TrainSliderProcess(BaseSDTrainProcess):
height, width = self.slider_config.resolutions[
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
@@ -368,9 +207,6 @@ class TrainSliderProcess(BaseSDTrainProcess):
guidance_scale=gs,
)
# set network multiplier
self.network.multiplier = multiplier * rand_weight
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
@@ -383,11 +219,14 @@ class TrainSliderProcess(BaseSDTrainProcess):
1, self.train_config.max_denoising_steps, (1,)
).item()
# for a complete slider, the batch size is 4 to begin with now
true_batch_size = prompt_pair.target_class.text_embeds.shape[0] * self.train_config.batch_size
# get noise
noise = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=self.train_config.batch_size,
batch_size=true_batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
@@ -397,7 +236,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier * rand_weight
# pass the multiplier list to the network
self.network.multiplier = prompt_pair.multiplier_list
denoised_latents = self.sd.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
@@ -410,19 +250,27 @@ class TrainSliderProcess(BaseSDTrainProcess):
guidance_scale=3,
)
# split the latents into out prompt pair chunks
denoised_latent_chunks = torch.chunk(denoised_latents, self.prompt_chunk_size, dim=0)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
# flush() # 4.2GB to 3GB on 512x512
# 4.20 GB RAM for 512x512
positive_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
prompt_pair.negative_target, # positive prompt
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
)
positive_latents.requires_grad = False
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
neutral_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
@@ -430,7 +278,9 @@ class TrainSliderProcess(BaseSDTrainProcess):
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
)
neutral_latents.requires_grad = False
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
unconditional_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
@@ -438,87 +288,142 @@ class TrainSliderProcess(BaseSDTrainProcess):
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
)
unconditional_latents.requires_grad = False
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
anchor_loss = None
flush() # 4.2GB to 3GB on 512x512
# 4.20 GB RAM for 512x512
anchor_loss_float = None
if len(self.anchor_pairs) > 0:
with torch.no_grad():
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor.to(self.device_torch, dtype=dtype)
# first we get the target prediction without network active
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
anchor.neg_prompt, anchor.prompt, 1, current_timestep, denoised_latents
# ).to("cpu", dtype=torch.float32)
).requires_grad_(False)
# to save vram, we will run these through separately while tracking grads
# otherwise it consumes a ton of vram and this isn't our speed bottleneck
anchor_chunks = split_anchors(anchor, self.prompt_chunk_size)
anchor_target_noise_chunks = torch.chunk(anchor_target_noise, self.prompt_chunk_size, dim=0)
assert len(anchor_chunks) == len(denoised_latent_chunks)
# 4.32 GB RAM for 512x512
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult * rand_weight
assert self.network.is_active
anchor_float_losses = []
for anchor_chunk, denoised_latent_chunk, anchor_target_noise_chunk in zip(
anchor_chunks, denoised_latent_chunks, anchor_target_noise_chunks
):
self.network.multiplier = anchor_chunk.multiplier_list
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
self.network.multiplier = prompt_pair.multiplier * rand_weight
with self.network:
self.network.multiplier = prompt_pair.multiplier * rand_weight
target_latents = get_noise_pred(
prompt_pair.positive_target,
prompt_pair.target_class,
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_chunk.neg_prompt, anchor_chunk.prompt, 1, current_timestep, denoised_latent_chunk
)
# 9.42 GB RAM for 512x512 -> 4.20 GB RAM for 512x512 with new grad_checkpointing
anchor_loss = loss_function(
anchor_target_noise,
anchor_target_noise_chunk,
anchor_pred_noise,
)
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
anchor_float_losses.append(anchor_loss.item())
# compute anchor loss gradients
# we will accumulate them later
# this saves a ton of memory doing them separately
anchor_loss.backward()
del anchor_pred_noise
del anchor_target_noise_chunk
del anchor_loss
flush()
anchor_loss_float = sum(anchor_float_losses) / len(anchor_float_losses)
del anchor_chunks
del anchor_target_noise_chunks
del anchor_target_noise
# move anchor back to cpu
anchor.to("cpu")
flush()
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
assert len(prompt_pair_chunks) == len(denoised_latent_chunks)
# 3.28 GB RAM for 512x512
with self.network:
assert self.network.is_active
loss_list = []
for prompt_pair_chunk, \
denoised_latent_chunk, \
positive_latents_chunk, \
neutral_latents_chunk, \
unconditional_latents_chunk \
in zip(
prompt_pair_chunks,
denoised_latent_chunks,
positive_latents_chunks,
neutral_latents_chunks,
unconditional_latents_chunks,
):
self.network.multiplier = prompt_pair_chunk.multiplier_list
target_latents = get_noise_pred(
prompt_pair_chunk.positive_target,
prompt_pair_chunk.target_class,
1,
current_timestep,
denoised_latent_chunk
)
guidance_scale = 1.0
offset = guidance_scale * (positive_latents - unconditional_latents)
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
# make offset multiplier based on actions
offset_multiplier_list = []
for action in prompt_pair_chunk.action_list:
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
offset_multiplier_list += [-1.0]
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
offset_multiplier_list += [1.0]
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
# make offset multiplier match rank of offset
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
offset *= offset_multiplier
offset_neutral = neutral_latents_chunk
# offsets are already adjusted on a per-batch basis
offset_neutral += offset
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
loss = loss_function(
target_latents,
offset_neutral,
) * weight
loss_slide = loss.item()
if anchor_loss is not None:
loss += anchor_loss
loss_float = loss.item()
loss = loss.to(self.device_torch)
) * prompt_pair_chunk.weight
loss.backward()
loss_list.append(loss.item())
del target_latents
del offset_neutral
del loss
flush()
optimizer.step()
lr_scheduler.step()
loss_float = sum(loss_list) / len(loss_list)
if anchor_loss_float is not None:
loss_float += anchor_loss_float
del (
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
latents,
latents
)
# move back to cpu
prompt_pair.to("cpu")
@@ -530,9 +435,9 @@ class TrainSliderProcess(BaseSDTrainProcess):
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
if anchor_loss_float is not None:
loss_dict['sl_l'] = loss_float
loss_dict['an_l'] = anchor_loss_float
return loss_dict
# end hook_train_loop

View File

@@ -108,6 +108,7 @@ class SliderConfig:
self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
self.prompt_file: str = kwargs.get('prompt_file', None)
self.prompt_tensors: str = kwargs.get('prompt_tensors', None)
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
class GenerateImageConfig:

View File

@@ -1,6 +1,7 @@
import torch
import torch.nn as nn
import numpy as np
from torch.utils.checkpoint import checkpoint
class ReductionKernel(nn.Module):
@@ -29,3 +30,15 @@ class ReductionKernel(nn.Module):
def forward(self, x):
return nn.functional.conv2d(x, self.kernel, stride=self.kernel_size, padding=0, groups=1)
class CheckpointGradients(nn.Module):
def __init__(self, is_gradient_checkpointing=True):
super(CheckpointGradients, self).__init__()
self.is_gradient_checkpointing = is_gradient_checkpointing
def forward(self, module, *args, num_chunks=1):
if self.is_gradient_checkpointing:
return checkpoint(module, *args, num_chunks=self.num_chunks)
else:
return module(*args)

View File

@@ -1,4 +1,6 @@
import math
import os
import re
import sys
from typing import List, Optional, Dict, Type, Union
@@ -9,7 +11,170 @@ from .paths import SD_SCRIPTS_ROOT
sys.path.append(SD_SCRIPTS_ROOT)
from networks.lora import LoRANetwork, LoRAModule, get_block_index
from networks.lora import LoRANetwork, get_block_index
from torch.utils.checkpoint import checkpoint
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
):
"""if alpha == 0 or None, alpha is rank (no scaling)."""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
# if limit_rank:
# self.lora_dim = min(lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier: Union[float, List[float]] = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.is_checkpointing = False
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
# this allows us to set different multipliers on a per item in a batch basis
# allowing us to run positive and negative weights in the same batch
# really only useful for slider training for now
def get_multiplier(self, lora_up):
batch_size = lora_up.size(0)
# batch will have all negative prompts first and positive prompts second
# our multiplier list is for a prompt pair. So we need to repeat it for positive and negative prompts
# if there is more than our multiplier, it is liekly a batch size increase, so we need to
# interleve the multipliers
if isinstance(self.multiplier, list):
if len(self.multiplier) == 0:
# single item, just return it
return self.multiplier[0]
else:
# we have a list of multipliers, so we need to get the multiplier for this batch
multiplier_tensor = torch.tensor(self.multiplier * 2).to(lora_up.device, dtype=lora_up.dtype)
# should be 1 for if total batch size was 1
num_interleaves = (batch_size // 2) // len(self.multiplier)
multiplier_tensor = multiplier_tensor.repeat_interleave(num_interleaves)
# match lora_up rank
if len(lora_up.size()) == 2:
multiplier_tensor = multiplier_tensor.view(-1, 1)
elif len(lora_up.size()) == 3:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1)
elif len(lora_up.size()) == 4:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1, 1)
return multiplier_tensor
else:
return self.multiplier
def _call_forward(self, x):
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return 0.0 # added to original forward
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
multiplier = self.get_multiplier(lx)
return lx * multiplier * scale
def create_custom_forward(self):
def custom_forward(*inputs):
return self._call_forward(*inputs)
return custom_forward
def forward(self, x):
org_forwarded = self.org_forward(x)
# TODO this just loses the grad. Not sure why. Probably why no one else is doing it either
# if torch.is_grad_enabled() and self.is_checkpointing and self.training:
# lora_output = checkpoint(
# self.create_custom_forward(),
# x,
# )
# else:
# lora_output = self._call_forward(x)
lora_output = self._call_forward(x)
return org_forwarded + lora_output
def enable_gradient_checkpointing(self):
self.is_checkpointing = True
def disable_gradient_checkpointing(self):
self.is_checkpointing = False
class LoRASpecialNetwork(LoRANetwork):
@@ -70,6 +235,7 @@ class LoRASpecialNetwork(LoRANetwork):
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.is_checkpointing = False
if modules_dim is not None:
print(f"create LoRA network from weights")
@@ -236,14 +402,11 @@ class LoRASpecialNetwork(LoRANetwork):
torch.save(state_dict, file)
@property
def multiplier(self):
def multiplier(self) -> Union[float, List[float]]:
return self._multiplier
@multiplier.setter
def multiplier(self, value):
# only update if changed
if self._multiplier == value:
return
def multiplier(self, value: Union[float, List[float]]):
self._multiplier = value
self._update_lora_multiplier()
@@ -264,6 +427,8 @@ class LoRASpecialNetwork(LoRANetwork):
for lora in self.text_encoder_loras:
lora.multiplier = 0
# called when the context manager is entered
# ie: with network:
def __enter__(self):
self.is_active = True
self._update_lora_multiplier()
@@ -281,3 +446,29 @@ class LoRASpecialNetwork(LoRANetwork):
loras += self.text_encoder_loras
for lora in loras:
lora.to(device, dtype)
def _update_checkpointing(self):
if self.is_checkpointing:
if hasattr(self, 'unet_loras'):
for lora in self.unet_loras:
lora.enable_gradient_checkpointing()
if hasattr(self, 'text_encoder_loras'):
for lora in self.text_encoder_loras:
lora.enable_gradient_checkpointing()
else:
if hasattr(self, 'unet_loras'):
for lora in self.unet_loras:
lora.disable_gradient_checkpointing()
if hasattr(self, 'text_encoder_loras'):
for lora in self.text_encoder_loras:
lora.disable_gradient_checkpointing()
def enable_gradient_checkpointing(self):
# not supported
self.is_checkpointing = True
self._update_checkpointing()
def disable_gradient_checkpointing(self):
# not supported
self.is_checkpointing = False
self._update_checkpointing()

387
toolkit/prompt_utils.py Normal file
View File

@@ -0,0 +1,387 @@
import os
from typing import Optional, TYPE_CHECKING, List
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from toolkit.stable_diffusion_model import PromptEmbeds
from toolkit.train_tools import get_torch_dtype
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
class EncodedPromptPair:
def __init__(
self,
target_class,
target_class_with_neutral,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
empty_prompt,
both_targets,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
action_list=None,
multiplier=1.0,
multiplier_list=None,
weight=1.0
):
self.target_class: PromptEmbeds = target_class
self.target_class_with_neutral: PromptEmbeds = target_class_with_neutral
self.positive_target: PromptEmbeds = positive_target
self.positive_target_with_neutral: PromptEmbeds = positive_target_with_neutral
self.negative_target: PromptEmbeds = negative_target
self.negative_target_with_neutral: PromptEmbeds = negative_target_with_neutral
self.neutral: PromptEmbeds = neutral
self.empty_prompt: PromptEmbeds = empty_prompt
self.both_targets: PromptEmbeds = both_targets
self.multiplier: float = multiplier
if multiplier_list is not None:
self.multiplier_list: list[float] = multiplier_list
else:
self.multiplier_list: list[float] = [multiplier]
self.action: int = action
if action_list is not None:
self.action_list: list[int] = action_list
else:
self.action_list: list[int] = [action]
self.weight: float = weight
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.target_class = self.target_class.to(*args, **kwargs)
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
def concat_prompt_embeds(prompt_embeds: list[PromptEmbeds]):
text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
pooled_embeds = None
if prompt_embeds[0].pooled_embeds is not None:
pooled_embeds = torch.cat([p.pooled_embeds for p in prompt_embeds], dim=0)
return PromptEmbeds([text_embeds, pooled_embeds])
def concat_prompt_pairs(prompt_pairs: list[EncodedPromptPair]):
weight = prompt_pairs[0].weight
target_class = concat_prompt_embeds([p.target_class for p in prompt_pairs])
target_class_with_neutral = concat_prompt_embeds([p.target_class_with_neutral for p in prompt_pairs])
positive_target = concat_prompt_embeds([p.positive_target for p in prompt_pairs])
positive_target_with_neutral = concat_prompt_embeds([p.positive_target_with_neutral for p in prompt_pairs])
negative_target = concat_prompt_embeds([p.negative_target for p in prompt_pairs])
negative_target_with_neutral = concat_prompt_embeds([p.negative_target_with_neutral for p in prompt_pairs])
neutral = concat_prompt_embeds([p.neutral for p in prompt_pairs])
empty_prompt = concat_prompt_embeds([p.empty_prompt for p in prompt_pairs])
both_targets = concat_prompt_embeds([p.both_targets for p in prompt_pairs])
# combine all the lists
action_list = []
multiplier_list = []
weight_list = []
for p in prompt_pairs:
action_list += p.action_list
multiplier_list += p.multiplier_list
return EncodedPromptPair(
target_class=target_class,
target_class_with_neutral=target_class_with_neutral,
positive_target=positive_target,
positive_target_with_neutral=positive_target_with_neutral,
negative_target=negative_target,
negative_target_with_neutral=negative_target_with_neutral,
neutral=neutral,
empty_prompt=empty_prompt,
both_targets=both_targets,
action_list=action_list,
multiplier_list=multiplier_list,
weight=weight
)
def split_prompt_embeds(concatenated: PromptEmbeds, num_parts=None) -> List[PromptEmbeds]:
if num_parts is None:
# use batch size
num_parts = concatenated.text_embeds.shape[0]
text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)
if concatenated.pooled_embeds is not None:
pooled_embeds_splits = torch.chunk(concatenated.pooled_embeds, num_parts, dim=0)
else:
pooled_embeds_splits = [None] * num_parts
prompt_embeds_list = [
PromptEmbeds([text, pooled])
for text, pooled in zip(text_embeds_splits, pooled_embeds_splits)
]
return prompt_embeds_list
def split_prompt_pairs(concatenated: EncodedPromptPair, num_embeds=None) -> List[EncodedPromptPair]:
target_class_splits = split_prompt_embeds(concatenated.target_class, num_embeds)
target_class_with_neutral_splits = split_prompt_embeds(concatenated.target_class_with_neutral, num_embeds)
positive_target_splits = split_prompt_embeds(concatenated.positive_target, num_embeds)
positive_target_with_neutral_splits = split_prompt_embeds(concatenated.positive_target_with_neutral, num_embeds)
negative_target_splits = split_prompt_embeds(concatenated.negative_target, num_embeds)
negative_target_with_neutral_splits = split_prompt_embeds(concatenated.negative_target_with_neutral, num_embeds)
neutral_splits = split_prompt_embeds(concatenated.neutral, num_embeds)
empty_prompt_splits = split_prompt_embeds(concatenated.empty_prompt, num_embeds)
both_targets_splits = split_prompt_embeds(concatenated.both_targets, num_embeds)
prompt_pairs = []
for i in range(len(target_class_splits)):
action_list_split = concatenated.action_list[i::len(target_class_splits)]
multiplier_list_split = concatenated.multiplier_list[i::len(target_class_splits)]
prompt_pair = EncodedPromptPair(
target_class=target_class_splits[i],
target_class_with_neutral=target_class_with_neutral_splits[i],
positive_target=positive_target_splits[i],
positive_target_with_neutral=positive_target_with_neutral_splits[i],
negative_target=negative_target_splits[i],
negative_target_with_neutral=negative_target_with_neutral_splits[i],
neutral=neutral_splits[i],
empty_prompt=empty_prompt_splits[i],
both_targets=both_targets_splits[i],
action_list=action_list_split,
multiplier_list=multiplier_list_split,
weight=concatenated.weight
)
prompt_pairs.append(prompt_pair)
return prompt_pairs
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0,
multiplier_list=None
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
if multiplier_list is not None:
self.multiplier_list: list[float] = multiplier_list
else:
self.multiplier_list: list[float] = [multiplier]
def to(self, *args, **kwargs):
self.prompt = self.prompt.to(*args, **kwargs)
self.neg_prompt = self.neg_prompt.to(*args, **kwargs)
return self
def concat_anchors(anchors: list[EncodedAnchor]):
prompt = concat_prompt_embeds([a.prompt for a in anchors])
neg_prompt = concat_prompt_embeds([a.neg_prompt for a in anchors])
return EncodedAnchor(
prompt=prompt,
neg_prompt=neg_prompt,
multiplier_list=[a.multiplier for a in anchors]
)
def split_anchors(concatenated: EncodedAnchor, num_anchors: int = 4) -> List[EncodedAnchor]:
prompt_splits = split_prompt_embeds(concatenated.prompt, num_anchors)
neg_prompt_splits = split_prompt_embeds(concatenated.neg_prompt, num_anchors)
multiplier_list_splits = torch.chunk(torch.tensor(concatenated.multiplier_list), num_anchors)
anchors = []
for prompt, neg_prompt, multiplier in zip(prompt_splits, neg_prompt_splits, multiplier_list_splits):
anchor = EncodedAnchor(
prompt=prompt,
neg_prompt=neg_prompt,
multiplier=multiplier.tolist()
)
anchors.append(anchor)
return anchors
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
@torch.no_grad()
def encode_prompts_to_cache(
prompt_list: list[str],
sd: "StableDiffusion",
cache: Optional[PromptEmbedsCache] = None,
prompt_tensor_file: Optional[str] = None,
) -> PromptEmbedsCache:
# TODO: add support for larger prompts
if cache is None:
cache = PromptEmbedsCache()
if prompt_tensor_file is not None:
# check to see if it exists
if os.path.exists(prompt_tensor_file):
# load it.
print(f"Loading prompt tensors from {prompt_tensor_file}")
prompt_tensors = load_file(prompt_tensor_file, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = sd.encode_prompt(empty_prompt)
for p in tqdm(prompt_list, desc="Encoding prompts", leave=False):
# build the cache
if cache[p] is None:
cache[p] = sd.encode_prompt(p).to(device="cpu", dtype=torch.float16)
# should we shard? It can get large
if prompt_tensor_file:
print(f"Saving prompt tensors to {prompt_tensor_file}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to(
"cpu", dtype=get_torch_dtype('fp16')
)
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to(
"cpu",
dtype=get_torch_dtype('fp16')
)
save_file(state_dict, prompt_tensor_file)
return cache
if TYPE_CHECKING:
from toolkit.config_modules import SliderTargetConfig
@torch.no_grad()
def build_prompt_pair_batch_from_cache(
cache: PromptEmbedsCache,
target: 'SliderTargetConfig',
neutral: Optional[str] = '',
) -> list[EncodedPromptPair]:
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
both = not erase_negative and not enhance_positive
prompt_pair_batch = []
if both or erase_negative:
print("Encoding erase negative")
prompt_pair_batch += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
print("Encoding enhance positive")
prompt_pair_batch += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
print("Encoding erase positive (inverse)")
prompt_pair_batch += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
if both or erase_negative:
print("Encoding enhance negative (inverse)")
prompt_pair_batch += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
both_targets=cache[f"{target.positive} {target.negative}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
return prompt_pair_batch

View File

@@ -1,6 +1,6 @@
import gc
import typing
from typing import Union, OrderedDict, List
from typing import Union, OrderedDict, List, Tuple
import sys
import os
@@ -50,10 +50,10 @@ VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
class PromptEmbeds:
text_embeds: torch.FloatTensor
pooled_embeds: Union[torch.FloatTensor, None]
text_embeds: torch.Tensor
pooled_embeds: Union[torch.Tensor, None]
def __init__(self, args) -> None:
def __init__(self, args: Union[Tuple[torch.Tensor], List[torch.Tensor], torch.Tensor]) -> None:
if isinstance(args, list) or isinstance(args, tuple):
# xl
self.text_embeds = args[0]
@@ -139,6 +139,17 @@ class StableDiffusion:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionXLPipeline
# see if path exists
if not os.path.exists(self.model_config.name_or_path):
# try to load with default diffusers
pipe = pipln.from_pretrained(
self.model_config.name_or_path,
dtype=dtype,
scheduler_type='ddpm',
device=self.device_torch,
).to(self.device_torch)
else:
pipe = pipln.from_single_file(
self.model_config.name_or_path,
dtype=dtype,
@@ -158,6 +169,19 @@ class StableDiffusion:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionPipeline
# see if path exists
if not os.path.exists(self.model_config.name_or_path):
# try to load with default diffusers
pipe = pipln.from_pretrained(
self.model_config.name_or_path,
dtype=dtype,
scheduler_type='dpm',
device=self.device_torch,
load_safety_checker=False,
requires_safety_checker=False,
).to(self.device_torch)
else:
pipe = pipln.from_single_file(
self.model_config.name_or_path,
dtype=dtype,