mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Complete reqork of how slider training works and optimized it to hell. Can run entire algorythm in 1 batch now with less VRAM consumption than a quarter of it used to take
This commit is contained in:
15
README.md
15
README.md
@@ -170,18 +170,27 @@ Just went in and out. It is much worse on smaller faces than shown here.
|
||||
|
||||
## Change Log
|
||||
|
||||
#### 2023-08-05
|
||||
- Huge memory rework and slider rework. Slider training is better thant ever with no more
|
||||
ram spikes. I also made it so all 4 parts of the slider algorythm run in one batch so they share gradient
|
||||
accumulation. This makes it much faster and more stable.
|
||||
- Updated the example config to be something more practical and more updated to current methods. It is now
|
||||
a detail slide and shows how to train one without a subject. 512x512 slider training for 1.5 should work on
|
||||
6GB gpu now. Will test soon to verify.
|
||||
|
||||
|
||||
#### 2021-10-20
|
||||
- Windows support bug fixes
|
||||
- Extensions! Added functionality to make and share custom extensions for training, merging, whatever.
|
||||
check out the example in the `extensions` folder. Read more about that above.
|
||||
- Model Merging, provided via the example extension.
|
||||
|
||||
#### 2021-08-03
|
||||
#### 2023-08-03
|
||||
Another big refactor to make SD more modular.
|
||||
|
||||
Made batch image generation script
|
||||
|
||||
#### 2021-08-01
|
||||
#### 2023-08-01
|
||||
Major changes and update. New LoRA rescale tool, look above for details. Added better metadata so
|
||||
Automatic1111 knows what the base model is. Added some experiments and a ton of updates. This thing is still unstable
|
||||
at the moment, so hopefully there are not breaking changes.
|
||||
@@ -199,7 +208,7 @@ encoders to the model as well as a few more entirely separate diffusion networks
|
||||
training without every experimental new paper added to it. The KISS principal.
|
||||
|
||||
|
||||
#### 2021-07-30
|
||||
#### 2023-07-30
|
||||
Added "anchors" to the slider trainer. This allows you to set a prompt that will be used as a
|
||||
regularizer. You can set the network multiplier to force spread consistency at high weights
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ job: train
|
||||
config:
|
||||
# the name will be used to create a folder in the output folder
|
||||
# it will also replace any [name] token in the rest of this config
|
||||
name: pet_slider_v1
|
||||
name: detail_slider_v1
|
||||
# folder will be created with name above in folder below
|
||||
# it can be relative to the project root or absolute
|
||||
training_folder: "output/LoRA"
|
||||
@@ -24,7 +24,7 @@ config:
|
||||
type: "lierla"
|
||||
# rank / dim of the network. Bigger is not always better. Especially for sliders. 8 is good
|
||||
rank: 8
|
||||
alpha: 1.0 # just leave it
|
||||
alpha: 4 # Do about half of rank
|
||||
|
||||
# training config
|
||||
train:
|
||||
@@ -33,7 +33,7 @@ config:
|
||||
# how many steps to train. More is not always better. I rarely go over 1000
|
||||
steps: 500
|
||||
# I have had good results with 4e-4 to 1e-4 at 500 steps
|
||||
lr: 1e-4
|
||||
lr: 2e-4
|
||||
# enables gradient checkpoint, saves vram, leave it on
|
||||
gradient_checkpointing: true
|
||||
# train the unet. I recommend leaving this true
|
||||
@@ -43,6 +43,7 @@ config:
|
||||
# not the description of it (text encoder)
|
||||
train_text_encoder: false
|
||||
|
||||
|
||||
# just leave unless you know what you are doing
|
||||
# also supports "dadaptation" but set lr to 1 if you use that,
|
||||
# but it learns too fast and I don't recommend it
|
||||
@@ -53,6 +54,7 @@ config:
|
||||
# while training. Just leave it
|
||||
max_denoising_steps: 40
|
||||
# works great at 1. I do 1 even with my 4090.
|
||||
# higher may not work right with newer single batch stacking code anyway
|
||||
batch_size: 1
|
||||
# bf16 works best if your GPU supports it (modern)
|
||||
dtype: bf16 # fp32, bf16, fp16
|
||||
@@ -69,12 +71,17 @@ config:
|
||||
name_or_path: "runwayml/stable-diffusion-v1-5"
|
||||
is_v2: false # for v2 models
|
||||
is_v_pred: false # for v-prediction models (most v2 models)
|
||||
# has some issues with the dual text encoder and the way we train sliders
|
||||
# it works bit weights need to probably be higher to see it.
|
||||
is_xl: false # for SDXL models
|
||||
|
||||
# saving config
|
||||
save:
|
||||
dtype: float16 # precision to save. I recommend float16
|
||||
save_every: 50 # save every this many steps
|
||||
# this will remove step counts more than this number
|
||||
# allows you to save more often in case of a crash without filling up your drive
|
||||
max_step_saves_to_keep: 2
|
||||
|
||||
# sampling config
|
||||
sample:
|
||||
@@ -92,21 +99,22 @@ config:
|
||||
# --m [number] # network multiplier. LoRA weight. -3 for the negative slide, 3 for the positive
|
||||
# slide are good tests. will inherit sample.network_multiplier if not set
|
||||
# --n [string] # negative prompt, will inherit sample.neg if not set
|
||||
|
||||
# Only 75 tokens allowed currently
|
||||
prompts: # our example is an animal slider, neg: dog, pos: cat
|
||||
- "a golden retriever --m -5"
|
||||
- "a golden retriever --m -3"
|
||||
- "a golden retriever --m 3"
|
||||
- "a golden retriever --m 5"
|
||||
- "calico cat --m -5"
|
||||
- "calico cat --m -3"
|
||||
- "calico cat --m 3"
|
||||
- "calico cat --m 5"
|
||||
- "an elephant --m -5"
|
||||
- "an elephant --m -3"
|
||||
- "an elephant --m 3"
|
||||
- "an elephant --m 5"
|
||||
# I like to do a wide positive and negative spread so I can see a good range and stop
|
||||
# early if the network is braking down
|
||||
prompts:
|
||||
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m -5"
|
||||
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m -3"
|
||||
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m 3"
|
||||
- "a woman in a coffee shop, black hat, blonde hair, blue jacket --m 5"
|
||||
- "a golden retriever sitting on a leather couch, --m -5"
|
||||
- "a golden retriever sitting on a leather couch --m -3"
|
||||
- "a golden retriever sitting on a leather couch --m 3"
|
||||
- "a golden retriever sitting on a leather couch --m 5"
|
||||
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m -5"
|
||||
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m -3"
|
||||
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m 3"
|
||||
- "a man with a beard and red flannel shirt, wearing vr goggles, walking into traffic --m 5"
|
||||
# negative prompt used on all prompts above as default if they don't have one
|
||||
neg: "cartoon, fake, drawing, illustration, cgi, animated, anime, monochrome"
|
||||
# seed for sampling. 42 is the answer for everything
|
||||
@@ -135,11 +143,16 @@ config:
|
||||
# resolutions to train on. [ width, height ]. This is less important for sliders
|
||||
# as we are not teaching the model anything it doesn't already know
|
||||
# but must be a size it understands [ 512, 512 ] for sd_v1.5 and [ 768, 768 ] for sd_v2.1
|
||||
# and [ 1024, 1024 ] for sd_xl
|
||||
# you can do as many as you want here
|
||||
resolutions:
|
||||
- [ 512, 512 ]
|
||||
# - [ 512, 768 ]
|
||||
# - [ 768, 768 ]
|
||||
# slider training uses 4 combined steps for a single round. This will do it in one gradient
|
||||
# step. It is highly optimized and shouldn't take anymore vram than doing without it,
|
||||
# since we break down batches for gradient accumulation now. so just leave it on.
|
||||
batch_full_slide: true
|
||||
# These are the concepts to train on. You can do as many as you want here,
|
||||
# but they can conflict outweigh each other. Other than experimenting, I recommend
|
||||
# just doing one for good results
|
||||
@@ -150,7 +163,9 @@ config:
|
||||
# a keyword necessarily but what the model understands the concept to represent.
|
||||
# "person" will affect men, women, children, etc but will not affect cats, dogs, etc
|
||||
# it is the models base general understanding of the concept and everything it represents
|
||||
- target_class: "animal"
|
||||
# you can leave it blank to affect everything. In this example, we are adjusting
|
||||
# detail, so we will leave it blank to affect everything
|
||||
- target_class: ""
|
||||
# positive is the prompt for the positive side of the slider.
|
||||
# It is the concept that will be excited and amplified in the model when we slide the slider
|
||||
# to the positive side and forgotten / inverted when we slide
|
||||
@@ -158,33 +173,44 @@ config:
|
||||
# the prompt. You want it to be the extreme of what you want to train on. For example,
|
||||
# if you want to train on fat people, you would use "an extremely fat, morbidly obese person"
|
||||
# as the prompt. Not just "fat person"
|
||||
positive: "cat"
|
||||
# max 75 tokens for now
|
||||
positive: "high detail, 8k, intricate, detailed, high resolution, high res, high quality"
|
||||
# negative is the prompt for the negative side of the slider and works the same as positive
|
||||
# it does not necessarily work the same as a negative prompt when generating images
|
||||
negative: "dog"
|
||||
# these need to be polar opposites.
|
||||
# max 76 tokens for now
|
||||
negative: "blurry, boring, fuzzy, low detail, low resolution, low res, low quality"
|
||||
# the loss for this target is multiplied by this number.
|
||||
# if you are doing more than one target it may be good to set less important ones
|
||||
# to a lower number like 0.1 so they dont outweigh the primary target
|
||||
# to a lower number like 0.1 so they don't outweigh the primary target
|
||||
weight: 1.0
|
||||
|
||||
# anchors are prompts that wer try to hold on to while training the slider
|
||||
# you want these to generate an image very similar to the target_class
|
||||
# without directly overlapping it. For example, if you are training on a person smiling,
|
||||
# you would use "a person with a face mask" as an anchor. It is a person, the image is the same
|
||||
# regardless if they are smiling or not
|
||||
anchors:
|
||||
# only positive prompt for now
|
||||
- prompt: "a woman"
|
||||
neg_prompt: "animal"
|
||||
# the multiplier applied to the LoRA when this is run.
|
||||
# higher will give it more weight but also help keep the lora from collapsing
|
||||
multiplier: 8.0
|
||||
- prompt: "a man"
|
||||
neg_prompt: "animal"
|
||||
multiplier: 8.0
|
||||
- prompt: "a person"
|
||||
neg_prompt: "animal"
|
||||
multiplier: 8.0
|
||||
|
||||
# anchors are prompts that we will try to hold on to while training the slider
|
||||
# these are NOT necessary and can prevent the slider from converging if not done right
|
||||
# leave them off if you are having issues, but they can help lock the network
|
||||
# on certain concepts to help prevent catastrophic forgetting
|
||||
# you want these to generate an image that is not your target_class, but close to it
|
||||
# is fine as long as it does not directly overlap it.
|
||||
# For example, if you are training on a person smiling,
|
||||
# you could use "a person with a face mask" as an anchor. It is a person, the image is the same
|
||||
# regardless if they are smiling or not, however, the closer the concept is to the target_class
|
||||
# the less the multiplier needs to be. Keep multipliers less than 1.0 for anchors usually
|
||||
# for close concepts, you want to be closer to 0.1 or 0.2
|
||||
# these will slow down training. I am leaving them off for the demo
|
||||
|
||||
# anchors:
|
||||
# - prompt: "a woman"
|
||||
# neg_prompt: "animal"
|
||||
# # the multiplier applied to the LoRA when this is run.
|
||||
# # higher will give it more weight but also help keep the lora from collapsing
|
||||
# multiplier: 1.0
|
||||
# - prompt: "a man"
|
||||
# neg_prompt: "animal"
|
||||
# multiplier: 1.0
|
||||
# - prompt: "a person"
|
||||
# neg_prompt: "animal"
|
||||
# multiplier: 1.0
|
||||
|
||||
# You can put any information you want here, and it will be saved in the model.
|
||||
# The below is an example, but you can put your grocery list in it if you want.
|
||||
|
||||
2
info.py
2
info.py
@@ -3,6 +3,6 @@ from collections import OrderedDict
|
||||
v = OrderedDict()
|
||||
v["name"] = "ai-toolkit"
|
||||
v["repo"] = "https://github.com/ostris/ai-toolkit"
|
||||
v["version"] = "0.0.3"
|
||||
v["version"] = "0.0.4"
|
||||
|
||||
software_meta = v
|
||||
|
||||
@@ -242,6 +242,12 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
unet.enable_xformers_memory_efficient_attention()
|
||||
if self.train_config.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
# if isinstance(text_encoder, list):
|
||||
# for te in text_encoder:
|
||||
# te.enable_gradient_checkpointing()
|
||||
# else:
|
||||
# text_encoder.enable_gradient_checkpointing()
|
||||
|
||||
unet.to(self.device_torch, dtype=dtype)
|
||||
unet.requires_grad_(False)
|
||||
unet.eval()
|
||||
@@ -281,6 +287,9 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
default_lr=self.train_config.lr
|
||||
)
|
||||
|
||||
if self.train_config.gradient_checkpointing:
|
||||
self.network.enable_gradient_checkpointing()
|
||||
|
||||
latest_save_path = self.get_latest_save_path()
|
||||
if latest_save_path is not None:
|
||||
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
|
||||
|
||||
@@ -3,12 +3,14 @@
|
||||
import random
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
from safetensors.torch import save_file, load_file
|
||||
import torch.utils.checkpoint as cp
|
||||
from tqdm import tqdm
|
||||
|
||||
from toolkit.config_modules import SliderConfig
|
||||
from toolkit.layers import CheckpointGradients
|
||||
from toolkit.paths import REPOS_ROOT
|
||||
import sys
|
||||
|
||||
@@ -16,88 +18,21 @@ from toolkit.stable_diffusion_model import PromptEmbeds
|
||||
from toolkit.train_tools import get_torch_dtype
|
||||
import gc
|
||||
from toolkit import train_tools
|
||||
from toolkit.prompt_utils import \
|
||||
EncodedPromptPair, ACTION_TYPES_SLIDER, \
|
||||
EncodedAnchor, concat_prompt_pairs, \
|
||||
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
|
||||
split_prompt_pairs
|
||||
|
||||
import torch
|
||||
from .BaseSDTrainProcess import BaseSDTrainProcess
|
||||
|
||||
|
||||
class ACTION_TYPES_SLIDER:
|
||||
ERASE_NEGATIVE = 0
|
||||
ENHANCE_NEGATIVE = 1
|
||||
|
||||
|
||||
def flush():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
|
||||
class EncodedPromptPair:
|
||||
def __init__(
|
||||
self,
|
||||
target_class,
|
||||
target_class_with_neutral,
|
||||
positive_target,
|
||||
positive_target_with_neutral,
|
||||
negative_target,
|
||||
negative_target_with_neutral,
|
||||
neutral,
|
||||
empty_prompt,
|
||||
both_targets,
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
multiplier=1.0,
|
||||
weight=1.0
|
||||
):
|
||||
self.target_class = target_class
|
||||
self.target_class_with_neutral = target_class_with_neutral
|
||||
self.positive_target = positive_target
|
||||
self.positive_target_with_neutral = positive_target_with_neutral
|
||||
self.negative_target = negative_target
|
||||
self.negative_target_with_neutral = negative_target_with_neutral
|
||||
self.neutral = neutral
|
||||
self.empty_prompt = empty_prompt
|
||||
self.both_targets = both_targets
|
||||
self.multiplier = multiplier
|
||||
self.action: int = action
|
||||
self.weight = weight
|
||||
|
||||
# simulate torch to for tensors
|
||||
def to(self, *args, **kwargs):
|
||||
self.target_class = self.target_class.to(*args, **kwargs)
|
||||
self.positive_target = self.positive_target.to(*args, **kwargs)
|
||||
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
|
||||
self.negative_target = self.negative_target.to(*args, **kwargs)
|
||||
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
|
||||
self.neutral = self.neutral.to(*args, **kwargs)
|
||||
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
|
||||
self.both_targets = self.both_targets.to(*args, **kwargs)
|
||||
return self
|
||||
|
||||
|
||||
class PromptEmbedsCache:
|
||||
prompts: dict[str, PromptEmbeds] = {}
|
||||
|
||||
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
|
||||
self.prompts[__name] = __value
|
||||
|
||||
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
|
||||
if __name in self.prompts:
|
||||
return self.prompts[__name]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class EncodedAnchor:
|
||||
def __init__(
|
||||
self,
|
||||
prompt,
|
||||
neg_prompt,
|
||||
multiplier=1.0
|
||||
):
|
||||
self.prompt = prompt
|
||||
self.neg_prompt = neg_prompt
|
||||
self.multiplier = multiplier
|
||||
|
||||
|
||||
class TrainSliderProcess(BaseSDTrainProcess):
|
||||
def __init__(self, process_id: int, job, config: OrderedDict):
|
||||
super().__init__(process_id, job, config)
|
||||
@@ -110,6 +45,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
self.prompt_cache = PromptEmbedsCache()
|
||||
self.prompt_pairs: list[EncodedPromptPair] = []
|
||||
self.anchor_pairs: list[EncodedAnchor] = []
|
||||
# keep track of prompt chunk size
|
||||
self.prompt_chunk_size = 1
|
||||
|
||||
def before_model_load(self):
|
||||
pass
|
||||
@@ -137,163 +74,57 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
|
||||
# get encoded latents for our prompts
|
||||
with torch.no_grad():
|
||||
if self.slider_config.prompt_tensors is not None:
|
||||
# check to see if it exists
|
||||
if os.path.exists(self.slider_config.prompt_tensors):
|
||||
# load it.
|
||||
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
|
||||
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
|
||||
# add them to the cache
|
||||
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
|
||||
if prompt_txt.startswith("te:"):
|
||||
prompt = prompt_txt[3:]
|
||||
# text_embeds
|
||||
text_embeds = prompt_tensor
|
||||
pooled_embeds = None
|
||||
# find pool embeds
|
||||
if f"pe:{prompt}" in prompt_tensors:
|
||||
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
|
||||
# list of neutrals. Can come from file or be empty
|
||||
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
|
||||
|
||||
# make it
|
||||
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
|
||||
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
|
||||
# build the prompts to cache
|
||||
prompts_to_cache = []
|
||||
for neutral in neutral_list:
|
||||
for target in self.slider_config.targets:
|
||||
prompt_list = [
|
||||
f"{target.target_class}", # target_class
|
||||
f"{target.target_class} {neutral}", # target_class with neutral
|
||||
f"{target.positive}", # positive_target
|
||||
f"{target.positive} {neutral}", # positive_target with neutral
|
||||
f"{target.negative}", # negative_target
|
||||
f"{target.negative} {neutral}", # negative_target with neutral
|
||||
f"{neutral}", # neutral
|
||||
f"{target.positive} {target.negative}", # both targets
|
||||
f"{target.negative} {target.positive}", # both targets reverse
|
||||
]
|
||||
prompts_to_cache += prompt_list
|
||||
|
||||
if len(cache.prompts) == 0:
|
||||
print("Prompt tensors not found. Encoding prompts..")
|
||||
empty_prompt = ""
|
||||
# encode empty_prompt
|
||||
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
|
||||
# remove duplicates
|
||||
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
|
||||
|
||||
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
|
||||
|
||||
for neutral in tqdm(neutral_list, desc="Encoding prompts", leave=False):
|
||||
for target in self.slider_config.targets:
|
||||
prompt_list = [
|
||||
f"{target.target_class}", # target_class
|
||||
f"{target.target_class} {neutral}", # target_class with neutral
|
||||
f"{target.positive}", # positive_target
|
||||
f"{target.positive} {neutral}", # positive_target with neutral
|
||||
f"{target.negative}", # negative_target
|
||||
f"{target.negative} {neutral}", # negative_target with neutral
|
||||
f"{neutral}", # neutral
|
||||
f"{target.positive} {target.negative}", # both targets
|
||||
f"{target.negative} {target.positive}", # both targets
|
||||
]
|
||||
for p in prompt_list:
|
||||
# build the cache
|
||||
if cache[p] is None:
|
||||
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
|
||||
|
||||
erase_negative = len(target.positive.strip()) == 0
|
||||
enhance_positive = len(target.negative.strip()) == 0
|
||||
|
||||
both = not erase_negative and not enhance_positive
|
||||
|
||||
if erase_negative and enhance_positive:
|
||||
raise ValueError("target must have at least one of positive or negative or both")
|
||||
# for slider we need to have an enhancer, an eraser, and then
|
||||
# an inverse with negative weights to balance the network
|
||||
# if we don't do this, we will get different contrast and focus.
|
||||
# we only perform actions of enhancing and erasing on the negative
|
||||
# todo work on way to do all of this in one shot
|
||||
if self.slider_config.prompt_tensors:
|
||||
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
|
||||
state_dict = {}
|
||||
for prompt_txt, prompt_embeds in cache.prompts.items():
|
||||
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
|
||||
dtype=get_torch_dtype('fp16'))
|
||||
if prompt_embeds.pooled_embeds is not None:
|
||||
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
|
||||
dtype=get_torch_dtype(
|
||||
'fp16'))
|
||||
save_file(state_dict, self.slider_config.prompt_tensors)
|
||||
# encode them
|
||||
cache = encode_prompts_to_cache(
|
||||
prompt_list=prompts_to_cache,
|
||||
sd=self.sd,
|
||||
cache=cache,
|
||||
prompt_tensor_file=self.slider_config.prompt_tensors
|
||||
)
|
||||
|
||||
prompt_pairs = []
|
||||
for neutral in tqdm(neutral_list, desc="Encoding prompts", leave=False):
|
||||
prompt_batches = []
|
||||
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
|
||||
for target in self.slider_config.targets:
|
||||
erase_negative = len(target.positive.strip()) == 0
|
||||
enhance_positive = len(target.negative.strip()) == 0
|
||||
prompt_pair_batch = build_prompt_pair_batch_from_cache(
|
||||
cache=cache,
|
||||
target=target,
|
||||
neutral=neutral,
|
||||
|
||||
both = not erase_negative and not enhance_positive
|
||||
|
||||
if both or erase_negative:
|
||||
print("Encoding erase negative")
|
||||
prompt_pairs += [
|
||||
# erase standard
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or enhance_positive:
|
||||
print("Encoding enhance positive")
|
||||
prompt_pairs += [
|
||||
# enhance standard, swap pos neg
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
# if both or enhance_positive:
|
||||
if both:
|
||||
print("Encoding erase positive (inverse)")
|
||||
prompt_pairs += [
|
||||
# erase inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
# if both or erase_negative:
|
||||
if both:
|
||||
print("Encoding enhance negative (inverse)")
|
||||
prompt_pairs += [
|
||||
# enhance inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
)
|
||||
if self.slider_config.batch_full_slide:
|
||||
# concat the prompt pairs
|
||||
# this allows us to run the entire 4 part process in one shot (for slider)
|
||||
self.prompt_chunk_size = 4
|
||||
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
|
||||
prompt_pairs += [concat_prompt_pair_batch]
|
||||
else:
|
||||
self.prompt_chunk_size = 1
|
||||
# do them one at a time (probably not necessary after new optimizations)
|
||||
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
|
||||
|
||||
# setup anchors
|
||||
anchor_pairs = []
|
||||
@@ -306,13 +137,26 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
if cache[prompt] == None:
|
||||
cache[prompt] = self.sd.encode_prompt(prompt)
|
||||
|
||||
anchor_batch = []
|
||||
# we get the prompt pair multiplier from first prompt pair
|
||||
# since they are all the same. We need to match their network polarity
|
||||
prompt_pair_multipliers = prompt_pairs[0].multiplier_list
|
||||
for prompt_multiplier in prompt_pair_multipliers:
|
||||
# match the network multiplier polarity
|
||||
anchor_scalar = 1.0 if prompt_multiplier > 0 else -1.0
|
||||
anchor_batch += [
|
||||
EncodedAnchor(
|
||||
prompt=cache[anchor.prompt],
|
||||
neg_prompt=cache[anchor.neg_prompt],
|
||||
multiplier=anchor.multiplier * anchor_scalar
|
||||
)
|
||||
]
|
||||
|
||||
anchor_pairs += [
|
||||
EncodedAnchor(
|
||||
prompt=cache[anchor.prompt],
|
||||
neg_prompt=cache[anchor.neg_prompt],
|
||||
multiplier=anchor.multiplier
|
||||
)
|
||||
concat_anchors(anchor_batch).to('cpu')
|
||||
]
|
||||
if len(anchor_pairs) > 0:
|
||||
self.anchor_pairs = anchor_pairs
|
||||
|
||||
# move to cpu to save vram
|
||||
# We don't need text encoder anymore, but keep it on cpu for sampling
|
||||
@@ -324,17 +168,13 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
self.sd.text_encoder.to("cpu")
|
||||
self.prompt_cache = cache
|
||||
self.prompt_pairs = prompt_pairs
|
||||
self.anchor_pairs = anchor_pairs
|
||||
# self.anchor_pairs = anchor_pairs
|
||||
flush()
|
||||
# end hook_before_train_loop
|
||||
|
||||
def hook_train_loop(self):
|
||||
dtype = get_torch_dtype(self.train_config.dtype)
|
||||
|
||||
# get random multiplier between 1 and 3
|
||||
rand_weight = 1
|
||||
# rand_weight = torch.rand((1,)).item() * 2 + 1
|
||||
|
||||
# get a random pair
|
||||
prompt_pair: EncodedPromptPair = self.prompt_pairs[
|
||||
torch.randint(0, len(self.prompt_pairs), (1,)).item()
|
||||
@@ -346,11 +186,10 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
height, width = self.slider_config.resolutions[
|
||||
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
|
||||
]
|
||||
if self.train_config.gradient_checkpointing:
|
||||
# may get disabled elsewhere
|
||||
self.sd.unet.enable_gradient_checkpointing()
|
||||
|
||||
weight = prompt_pair.weight
|
||||
multiplier = prompt_pair.multiplier
|
||||
|
||||
unet = self.sd.unet
|
||||
noise_scheduler = self.sd.noise_scheduler
|
||||
optimizer = self.optimizer
|
||||
lr_scheduler = self.lr_scheduler
|
||||
@@ -368,9 +207,6 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
guidance_scale=gs,
|
||||
)
|
||||
|
||||
# set network multiplier
|
||||
self.network.multiplier = multiplier * rand_weight
|
||||
|
||||
with torch.no_grad():
|
||||
self.sd.noise_scheduler.set_timesteps(
|
||||
self.train_config.max_denoising_steps, device=self.device_torch
|
||||
@@ -383,11 +219,14 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
1, self.train_config.max_denoising_steps, (1,)
|
||||
).item()
|
||||
|
||||
# for a complete slider, the batch size is 4 to begin with now
|
||||
true_batch_size = prompt_pair.target_class.text_embeds.shape[0] * self.train_config.batch_size
|
||||
|
||||
# get noise
|
||||
noise = self.sd.get_latent_noise(
|
||||
pixel_height=height,
|
||||
pixel_width=width,
|
||||
batch_size=self.train_config.batch_size,
|
||||
batch_size=true_batch_size,
|
||||
noise_offset=self.train_config.noise_offset,
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
@@ -397,7 +236,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
self.network.multiplier = multiplier * rand_weight
|
||||
# pass the multiplier list to the network
|
||||
self.network.multiplier = prompt_pair.multiplier_list
|
||||
denoised_latents = self.sd.diffuse_some_steps(
|
||||
latents, # pass simple noise latents
|
||||
train_tools.concat_prompt_embeddings(
|
||||
@@ -410,19 +250,27 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
guidance_scale=3,
|
||||
)
|
||||
|
||||
# split the latents into out prompt pair chunks
|
||||
denoised_latent_chunks = torch.chunk(denoised_latents, self.prompt_chunk_size, dim=0)
|
||||
|
||||
noise_scheduler.set_timesteps(1000)
|
||||
|
||||
current_timestep = noise_scheduler.timesteps[
|
||||
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
|
||||
]
|
||||
|
||||
# flush() # 4.2GB to 3GB on 512x512
|
||||
|
||||
# 4.20 GB RAM for 512x512
|
||||
positive_latents = get_noise_pred(
|
||||
prompt_pair.positive_target, # negative prompt
|
||||
prompt_pair.negative_target, # positive prompt
|
||||
1,
|
||||
current_timestep,
|
||||
denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
)
|
||||
positive_latents.requires_grad = False
|
||||
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
|
||||
|
||||
neutral_latents = get_noise_pred(
|
||||
prompt_pair.positive_target, # negative prompt
|
||||
@@ -430,7 +278,9 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
1,
|
||||
current_timestep,
|
||||
denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
)
|
||||
neutral_latents.requires_grad = False
|
||||
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
|
||||
|
||||
unconditional_latents = get_noise_pred(
|
||||
prompt_pair.positive_target, # negative prompt
|
||||
@@ -438,87 +288,142 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
1,
|
||||
current_timestep,
|
||||
denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
anchor_loss = None
|
||||
if len(self.anchor_pairs) > 0:
|
||||
# get a random anchor pair
|
||||
anchor: EncodedAnchor = self.anchor_pairs[
|
||||
torch.randint(0, len(self.anchor_pairs), (1,)).item()
|
||||
]
|
||||
with torch.no_grad():
|
||||
anchor_target_noise = get_noise_pred(
|
||||
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
with self.network:
|
||||
# anchor whatever weight prompt pair is using
|
||||
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
|
||||
self.network.multiplier = anchor.multiplier * pos_nem_mult * rand_weight
|
||||
|
||||
anchor_pred_noise = get_noise_pred(
|
||||
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
self.network.multiplier = prompt_pair.multiplier * rand_weight
|
||||
|
||||
with self.network:
|
||||
self.network.multiplier = prompt_pair.multiplier * rand_weight
|
||||
target_latents = get_noise_pred(
|
||||
prompt_pair.positive_target,
|
||||
prompt_pair.target_class,
|
||||
1,
|
||||
current_timestep,
|
||||
denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
# if self.logging_config.verbose:
|
||||
# self.print("target_latents:", target_latents[0, 0, :5, :5])
|
||||
|
||||
positive_latents.requires_grad = False
|
||||
neutral_latents.requires_grad = False
|
||||
unconditional_latents.requires_grad = False
|
||||
if len(self.anchor_pairs) > 0:
|
||||
anchor_target_noise.requires_grad = False
|
||||
anchor_loss = loss_function(
|
||||
anchor_target_noise,
|
||||
anchor_pred_noise,
|
||||
)
|
||||
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
|
||||
guidance_scale = 1.0
|
||||
unconditional_latents.requires_grad = False
|
||||
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
|
||||
|
||||
offset = guidance_scale * (positive_latents - unconditional_latents)
|
||||
flush() # 4.2GB to 3GB on 512x512
|
||||
|
||||
offset_neutral = neutral_latents
|
||||
if erase:
|
||||
offset_neutral -= offset
|
||||
else:
|
||||
# enhance
|
||||
offset_neutral += offset
|
||||
# 4.20 GB RAM for 512x512
|
||||
anchor_loss_float = None
|
||||
if len(self.anchor_pairs) > 0:
|
||||
with torch.no_grad():
|
||||
# get a random anchor pair
|
||||
anchor: EncodedAnchor = self.anchor_pairs[
|
||||
torch.randint(0, len(self.anchor_pairs), (1,)).item()
|
||||
]
|
||||
anchor.to(self.device_torch, dtype=dtype)
|
||||
|
||||
loss = loss_function(
|
||||
target_latents,
|
||||
offset_neutral,
|
||||
) * weight
|
||||
# first we get the target prediction without network active
|
||||
anchor_target_noise = get_noise_pred(
|
||||
anchor.neg_prompt, anchor.prompt, 1, current_timestep, denoised_latents
|
||||
# ).to("cpu", dtype=torch.float32)
|
||||
).requires_grad_(False)
|
||||
|
||||
loss_slide = loss.item()
|
||||
# to save vram, we will run these through separately while tracking grads
|
||||
# otherwise it consumes a ton of vram and this isn't our speed bottleneck
|
||||
anchor_chunks = split_anchors(anchor, self.prompt_chunk_size)
|
||||
anchor_target_noise_chunks = torch.chunk(anchor_target_noise, self.prompt_chunk_size, dim=0)
|
||||
assert len(anchor_chunks) == len(denoised_latent_chunks)
|
||||
|
||||
if anchor_loss is not None:
|
||||
loss += anchor_loss
|
||||
# 4.32 GB RAM for 512x512
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
anchor_float_losses = []
|
||||
for anchor_chunk, denoised_latent_chunk, anchor_target_noise_chunk in zip(
|
||||
anchor_chunks, denoised_latent_chunks, anchor_target_noise_chunks
|
||||
):
|
||||
self.network.multiplier = anchor_chunk.multiplier_list
|
||||
|
||||
loss_float = loss.item()
|
||||
anchor_pred_noise = get_noise_pred(
|
||||
anchor_chunk.neg_prompt, anchor_chunk.prompt, 1, current_timestep, denoised_latent_chunk
|
||||
)
|
||||
# 9.42 GB RAM for 512x512 -> 4.20 GB RAM for 512x512 with new grad_checkpointing
|
||||
anchor_loss = loss_function(
|
||||
anchor_target_noise_chunk,
|
||||
anchor_pred_noise,
|
||||
)
|
||||
anchor_float_losses.append(anchor_loss.item())
|
||||
# compute anchor loss gradients
|
||||
# we will accumulate them later
|
||||
# this saves a ton of memory doing them separately
|
||||
anchor_loss.backward()
|
||||
del anchor_pred_noise
|
||||
del anchor_target_noise_chunk
|
||||
del anchor_loss
|
||||
flush()
|
||||
|
||||
loss = loss.to(self.device_torch)
|
||||
anchor_loss_float = sum(anchor_float_losses) / len(anchor_float_losses)
|
||||
del anchor_chunks
|
||||
del anchor_target_noise_chunks
|
||||
del anchor_target_noise
|
||||
# move anchor back to cpu
|
||||
anchor.to("cpu")
|
||||
flush()
|
||||
|
||||
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
|
||||
assert len(prompt_pair_chunks) == len(denoised_latent_chunks)
|
||||
# 3.28 GB RAM for 512x512
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
loss_list = []
|
||||
for prompt_pair_chunk, \
|
||||
denoised_latent_chunk, \
|
||||
positive_latents_chunk, \
|
||||
neutral_latents_chunk, \
|
||||
unconditional_latents_chunk \
|
||||
in zip(
|
||||
prompt_pair_chunks,
|
||||
denoised_latent_chunks,
|
||||
positive_latents_chunks,
|
||||
neutral_latents_chunks,
|
||||
unconditional_latents_chunks,
|
||||
):
|
||||
self.network.multiplier = prompt_pair_chunk.multiplier_list
|
||||
target_latents = get_noise_pred(
|
||||
prompt_pair_chunk.positive_target,
|
||||
prompt_pair_chunk.target_class,
|
||||
1,
|
||||
current_timestep,
|
||||
denoised_latent_chunk
|
||||
)
|
||||
|
||||
guidance_scale = 1.0
|
||||
|
||||
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
|
||||
|
||||
# make offset multiplier based on actions
|
||||
offset_multiplier_list = []
|
||||
for action in prompt_pair_chunk.action_list:
|
||||
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
|
||||
offset_multiplier_list += [-1.0]
|
||||
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
|
||||
offset_multiplier_list += [1.0]
|
||||
|
||||
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
|
||||
# make offset multiplier match rank of offset
|
||||
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
|
||||
offset *= offset_multiplier
|
||||
|
||||
offset_neutral = neutral_latents_chunk
|
||||
# offsets are already adjusted on a per-batch basis
|
||||
offset_neutral += offset
|
||||
|
||||
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
|
||||
loss = loss_function(
|
||||
target_latents,
|
||||
offset_neutral,
|
||||
) * prompt_pair_chunk.weight
|
||||
|
||||
loss.backward()
|
||||
loss_list.append(loss.item())
|
||||
del target_latents
|
||||
del offset_neutral
|
||||
del loss
|
||||
flush()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
loss_float = sum(loss_list) / len(loss_list)
|
||||
if anchor_loss_float is not None:
|
||||
loss_float += anchor_loss_float
|
||||
|
||||
del (
|
||||
positive_latents,
|
||||
neutral_latents,
|
||||
unconditional_latents,
|
||||
target_latents,
|
||||
latents,
|
||||
latents
|
||||
)
|
||||
# move back to cpu
|
||||
prompt_pair.to("cpu")
|
||||
@@ -530,9 +435,9 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
loss_dict = OrderedDict(
|
||||
{'loss': loss_float},
|
||||
)
|
||||
if anchor_loss is not None:
|
||||
loss_dict['sl_l'] = loss_slide
|
||||
loss_dict['an_l'] = anchor_loss.item()
|
||||
if anchor_loss_float is not None:
|
||||
loss_dict['sl_l'] = loss_float
|
||||
loss_dict['an_l'] = anchor_loss_float
|
||||
|
||||
return loss_dict
|
||||
# end hook_train_loop
|
||||
|
||||
@@ -108,6 +108,7 @@ class SliderConfig:
|
||||
self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
|
||||
self.prompt_file: str = kwargs.get('prompt_file', None)
|
||||
self.prompt_tensors: str = kwargs.get('prompt_tensors', None)
|
||||
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
|
||||
|
||||
|
||||
class GenerateImageConfig:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
|
||||
class ReductionKernel(nn.Module):
|
||||
@@ -29,3 +30,15 @@ class ReductionKernel(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return nn.functional.conv2d(x, self.kernel, stride=self.kernel_size, padding=0, groups=1)
|
||||
|
||||
|
||||
class CheckpointGradients(nn.Module):
|
||||
def __init__(self, is_gradient_checkpointing=True):
|
||||
super(CheckpointGradients, self).__init__()
|
||||
self.is_gradient_checkpointing = is_gradient_checkpointing
|
||||
|
||||
def forward(self, module, *args, num_chunks=1):
|
||||
if self.is_gradient_checkpointing:
|
||||
return checkpoint(module, *args, num_chunks=self.num_chunks)
|
||||
else:
|
||||
return module(*args)
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from typing import List, Optional, Dict, Type, Union
|
||||
|
||||
@@ -9,7 +11,170 @@ from .paths import SD_SCRIPTS_ROOT
|
||||
|
||||
sys.path.append(SD_SCRIPTS_ROOT)
|
||||
|
||||
from networks.lora import LoRANetwork, LoRAModule, get_block_index
|
||||
from networks.lora import LoRANetwork, get_block_index
|
||||
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
|
||||
|
||||
|
||||
class LoRAModule(torch.nn.Module):
|
||||
"""
|
||||
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lora_name,
|
||||
org_module: torch.nn.Module,
|
||||
multiplier=1.0,
|
||||
lora_dim=4,
|
||||
alpha=1,
|
||||
dropout=None,
|
||||
rank_dropout=None,
|
||||
module_dropout=None,
|
||||
):
|
||||
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
||||
super().__init__()
|
||||
self.lora_name = lora_name
|
||||
|
||||
if org_module.__class__.__name__ == "Conv2d":
|
||||
in_dim = org_module.in_channels
|
||||
out_dim = org_module.out_channels
|
||||
else:
|
||||
in_dim = org_module.in_features
|
||||
out_dim = org_module.out_features
|
||||
|
||||
# if limit_rank:
|
||||
# self.lora_dim = min(lora_dim, in_dim, out_dim)
|
||||
# if self.lora_dim != lora_dim:
|
||||
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
||||
# else:
|
||||
self.lora_dim = lora_dim
|
||||
|
||||
if org_module.__class__.__name__ == "Conv2d":
|
||||
kernel_size = org_module.kernel_size
|
||||
stride = org_module.stride
|
||||
padding = org_module.padding
|
||||
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
||||
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
||||
else:
|
||||
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
||||
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
||||
|
||||
if type(alpha) == torch.Tensor:
|
||||
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
||||
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
||||
self.scale = alpha / self.lora_dim
|
||||
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
||||
|
||||
# same as microsoft's
|
||||
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
||||
torch.nn.init.zeros_(self.lora_up.weight)
|
||||
|
||||
self.multiplier: Union[float, List[float]] = multiplier
|
||||
self.org_module = org_module # remove in applying
|
||||
self.dropout = dropout
|
||||
self.rank_dropout = rank_dropout
|
||||
self.module_dropout = module_dropout
|
||||
self.is_checkpointing = False
|
||||
|
||||
def apply_to(self):
|
||||
self.org_forward = self.org_module.forward
|
||||
self.org_module.forward = self.forward
|
||||
del self.org_module
|
||||
|
||||
# this allows us to set different multipliers on a per item in a batch basis
|
||||
# allowing us to run positive and negative weights in the same batch
|
||||
# really only useful for slider training for now
|
||||
def get_multiplier(self, lora_up):
|
||||
batch_size = lora_up.size(0)
|
||||
# batch will have all negative prompts first and positive prompts second
|
||||
# our multiplier list is for a prompt pair. So we need to repeat it for positive and negative prompts
|
||||
# if there is more than our multiplier, it is liekly a batch size increase, so we need to
|
||||
# interleve the multipliers
|
||||
if isinstance(self.multiplier, list):
|
||||
if len(self.multiplier) == 0:
|
||||
# single item, just return it
|
||||
return self.multiplier[0]
|
||||
else:
|
||||
# we have a list of multipliers, so we need to get the multiplier for this batch
|
||||
multiplier_tensor = torch.tensor(self.multiplier * 2).to(lora_up.device, dtype=lora_up.dtype)
|
||||
# should be 1 for if total batch size was 1
|
||||
num_interleaves = (batch_size // 2) // len(self.multiplier)
|
||||
multiplier_tensor = multiplier_tensor.repeat_interleave(num_interleaves)
|
||||
|
||||
# match lora_up rank
|
||||
if len(lora_up.size()) == 2:
|
||||
multiplier_tensor = multiplier_tensor.view(-1, 1)
|
||||
elif len(lora_up.size()) == 3:
|
||||
multiplier_tensor = multiplier_tensor.view(-1, 1, 1)
|
||||
elif len(lora_up.size()) == 4:
|
||||
multiplier_tensor = multiplier_tensor.view(-1, 1, 1, 1)
|
||||
return multiplier_tensor
|
||||
|
||||
else:
|
||||
return self.multiplier
|
||||
|
||||
def _call_forward(self, x):
|
||||
# module dropout
|
||||
if self.module_dropout is not None and self.training:
|
||||
if torch.rand(1) < self.module_dropout:
|
||||
return 0.0 # added to original forward
|
||||
|
||||
lx = self.lora_down(x)
|
||||
|
||||
# normal dropout
|
||||
if self.dropout is not None and self.training:
|
||||
lx = torch.nn.functional.dropout(lx, p=self.dropout)
|
||||
|
||||
# rank dropout
|
||||
if self.rank_dropout is not None and self.training:
|
||||
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
|
||||
if len(lx.size()) == 3:
|
||||
mask = mask.unsqueeze(1) # for Text Encoder
|
||||
elif len(lx.size()) == 4:
|
||||
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
|
||||
lx = lx * mask
|
||||
|
||||
# scaling for rank dropout: treat as if the rank is changed
|
||||
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
|
||||
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
|
||||
else:
|
||||
scale = self.scale
|
||||
|
||||
lx = self.lora_up(lx)
|
||||
|
||||
multiplier = self.get_multiplier(lx)
|
||||
|
||||
return lx * multiplier * scale
|
||||
|
||||
def create_custom_forward(self):
|
||||
def custom_forward(*inputs):
|
||||
return self._call_forward(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
def forward(self, x):
|
||||
org_forwarded = self.org_forward(x)
|
||||
# TODO this just loses the grad. Not sure why. Probably why no one else is doing it either
|
||||
# if torch.is_grad_enabled() and self.is_checkpointing and self.training:
|
||||
# lora_output = checkpoint(
|
||||
# self.create_custom_forward(),
|
||||
# x,
|
||||
# )
|
||||
# else:
|
||||
# lora_output = self._call_forward(x)
|
||||
|
||||
lora_output = self._call_forward(x)
|
||||
|
||||
return org_forwarded + lora_output
|
||||
|
||||
def enable_gradient_checkpointing(self):
|
||||
self.is_checkpointing = True
|
||||
|
||||
def disable_gradient_checkpointing(self):
|
||||
self.is_checkpointing = False
|
||||
|
||||
|
||||
class LoRASpecialNetwork(LoRANetwork):
|
||||
@@ -70,6 +235,7 @@ class LoRASpecialNetwork(LoRANetwork):
|
||||
self.dropout = dropout
|
||||
self.rank_dropout = rank_dropout
|
||||
self.module_dropout = module_dropout
|
||||
self.is_checkpointing = False
|
||||
|
||||
if modules_dim is not None:
|
||||
print(f"create LoRA network from weights")
|
||||
@@ -236,14 +402,11 @@ class LoRASpecialNetwork(LoRANetwork):
|
||||
torch.save(state_dict, file)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
def multiplier(self) -> Union[float, List[float]]:
|
||||
return self._multiplier
|
||||
|
||||
@multiplier.setter
|
||||
def multiplier(self, value):
|
||||
# only update if changed
|
||||
if self._multiplier == value:
|
||||
return
|
||||
def multiplier(self, value: Union[float, List[float]]):
|
||||
self._multiplier = value
|
||||
self._update_lora_multiplier()
|
||||
|
||||
@@ -264,6 +427,8 @@ class LoRASpecialNetwork(LoRANetwork):
|
||||
for lora in self.text_encoder_loras:
|
||||
lora.multiplier = 0
|
||||
|
||||
# called when the context manager is entered
|
||||
# ie: with network:
|
||||
def __enter__(self):
|
||||
self.is_active = True
|
||||
self._update_lora_multiplier()
|
||||
@@ -281,3 +446,29 @@ class LoRASpecialNetwork(LoRANetwork):
|
||||
loras += self.text_encoder_loras
|
||||
for lora in loras:
|
||||
lora.to(device, dtype)
|
||||
|
||||
def _update_checkpointing(self):
|
||||
if self.is_checkpointing:
|
||||
if hasattr(self, 'unet_loras'):
|
||||
for lora in self.unet_loras:
|
||||
lora.enable_gradient_checkpointing()
|
||||
if hasattr(self, 'text_encoder_loras'):
|
||||
for lora in self.text_encoder_loras:
|
||||
lora.enable_gradient_checkpointing()
|
||||
else:
|
||||
if hasattr(self, 'unet_loras'):
|
||||
for lora in self.unet_loras:
|
||||
lora.disable_gradient_checkpointing()
|
||||
if hasattr(self, 'text_encoder_loras'):
|
||||
for lora in self.text_encoder_loras:
|
||||
lora.disable_gradient_checkpointing()
|
||||
|
||||
def enable_gradient_checkpointing(self):
|
||||
# not supported
|
||||
self.is_checkpointing = True
|
||||
self._update_checkpointing()
|
||||
|
||||
def disable_gradient_checkpointing(self):
|
||||
# not supported
|
||||
self.is_checkpointing = False
|
||||
self._update_checkpointing()
|
||||
|
||||
387
toolkit/prompt_utils.py
Normal file
387
toolkit/prompt_utils.py
Normal file
@@ -0,0 +1,387 @@
|
||||
import os
|
||||
from typing import Optional, TYPE_CHECKING, List
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
from tqdm import tqdm
|
||||
|
||||
from toolkit.stable_diffusion_model import PromptEmbeds
|
||||
from toolkit.train_tools import get_torch_dtype
|
||||
|
||||
|
||||
class ACTION_TYPES_SLIDER:
|
||||
ERASE_NEGATIVE = 0
|
||||
ENHANCE_NEGATIVE = 1
|
||||
|
||||
|
||||
class EncodedPromptPair:
|
||||
def __init__(
|
||||
self,
|
||||
target_class,
|
||||
target_class_with_neutral,
|
||||
positive_target,
|
||||
positive_target_with_neutral,
|
||||
negative_target,
|
||||
negative_target_with_neutral,
|
||||
neutral,
|
||||
empty_prompt,
|
||||
both_targets,
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
action_list=None,
|
||||
multiplier=1.0,
|
||||
multiplier_list=None,
|
||||
weight=1.0
|
||||
):
|
||||
self.target_class: PromptEmbeds = target_class
|
||||
self.target_class_with_neutral: PromptEmbeds = target_class_with_neutral
|
||||
self.positive_target: PromptEmbeds = positive_target
|
||||
self.positive_target_with_neutral: PromptEmbeds = positive_target_with_neutral
|
||||
self.negative_target: PromptEmbeds = negative_target
|
||||
self.negative_target_with_neutral: PromptEmbeds = negative_target_with_neutral
|
||||
self.neutral: PromptEmbeds = neutral
|
||||
self.empty_prompt: PromptEmbeds = empty_prompt
|
||||
self.both_targets: PromptEmbeds = both_targets
|
||||
self.multiplier: float = multiplier
|
||||
if multiplier_list is not None:
|
||||
self.multiplier_list: list[float] = multiplier_list
|
||||
else:
|
||||
self.multiplier_list: list[float] = [multiplier]
|
||||
self.action: int = action
|
||||
if action_list is not None:
|
||||
self.action_list: list[int] = action_list
|
||||
else:
|
||||
self.action_list: list[int] = [action]
|
||||
self.weight: float = weight
|
||||
|
||||
# simulate torch to for tensors
|
||||
def to(self, *args, **kwargs):
|
||||
self.target_class = self.target_class.to(*args, **kwargs)
|
||||
self.positive_target = self.positive_target.to(*args, **kwargs)
|
||||
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
|
||||
self.negative_target = self.negative_target.to(*args, **kwargs)
|
||||
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
|
||||
self.neutral = self.neutral.to(*args, **kwargs)
|
||||
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
|
||||
self.both_targets = self.both_targets.to(*args, **kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def concat_prompt_embeds(prompt_embeds: list[PromptEmbeds]):
|
||||
text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
|
||||
pooled_embeds = None
|
||||
if prompt_embeds[0].pooled_embeds is not None:
|
||||
pooled_embeds = torch.cat([p.pooled_embeds for p in prompt_embeds], dim=0)
|
||||
return PromptEmbeds([text_embeds, pooled_embeds])
|
||||
|
||||
|
||||
def concat_prompt_pairs(prompt_pairs: list[EncodedPromptPair]):
|
||||
weight = prompt_pairs[0].weight
|
||||
target_class = concat_prompt_embeds([p.target_class for p in prompt_pairs])
|
||||
target_class_with_neutral = concat_prompt_embeds([p.target_class_with_neutral for p in prompt_pairs])
|
||||
positive_target = concat_prompt_embeds([p.positive_target for p in prompt_pairs])
|
||||
positive_target_with_neutral = concat_prompt_embeds([p.positive_target_with_neutral for p in prompt_pairs])
|
||||
negative_target = concat_prompt_embeds([p.negative_target for p in prompt_pairs])
|
||||
negative_target_with_neutral = concat_prompt_embeds([p.negative_target_with_neutral for p in prompt_pairs])
|
||||
neutral = concat_prompt_embeds([p.neutral for p in prompt_pairs])
|
||||
empty_prompt = concat_prompt_embeds([p.empty_prompt for p in prompt_pairs])
|
||||
both_targets = concat_prompt_embeds([p.both_targets for p in prompt_pairs])
|
||||
# combine all the lists
|
||||
action_list = []
|
||||
multiplier_list = []
|
||||
weight_list = []
|
||||
for p in prompt_pairs:
|
||||
action_list += p.action_list
|
||||
multiplier_list += p.multiplier_list
|
||||
return EncodedPromptPair(
|
||||
target_class=target_class,
|
||||
target_class_with_neutral=target_class_with_neutral,
|
||||
positive_target=positive_target,
|
||||
positive_target_with_neutral=positive_target_with_neutral,
|
||||
negative_target=negative_target,
|
||||
negative_target_with_neutral=negative_target_with_neutral,
|
||||
neutral=neutral,
|
||||
empty_prompt=empty_prompt,
|
||||
both_targets=both_targets,
|
||||
action_list=action_list,
|
||||
multiplier_list=multiplier_list,
|
||||
weight=weight
|
||||
)
|
||||
|
||||
|
||||
def split_prompt_embeds(concatenated: PromptEmbeds, num_parts=None) -> List[PromptEmbeds]:
|
||||
if num_parts is None:
|
||||
# use batch size
|
||||
num_parts = concatenated.text_embeds.shape[0]
|
||||
text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)
|
||||
|
||||
if concatenated.pooled_embeds is not None:
|
||||
pooled_embeds_splits = torch.chunk(concatenated.pooled_embeds, num_parts, dim=0)
|
||||
else:
|
||||
pooled_embeds_splits = [None] * num_parts
|
||||
|
||||
prompt_embeds_list = [
|
||||
PromptEmbeds([text, pooled])
|
||||
for text, pooled in zip(text_embeds_splits, pooled_embeds_splits)
|
||||
]
|
||||
|
||||
return prompt_embeds_list
|
||||
|
||||
|
||||
def split_prompt_pairs(concatenated: EncodedPromptPair, num_embeds=None) -> List[EncodedPromptPair]:
|
||||
target_class_splits = split_prompt_embeds(concatenated.target_class, num_embeds)
|
||||
target_class_with_neutral_splits = split_prompt_embeds(concatenated.target_class_with_neutral, num_embeds)
|
||||
positive_target_splits = split_prompt_embeds(concatenated.positive_target, num_embeds)
|
||||
positive_target_with_neutral_splits = split_prompt_embeds(concatenated.positive_target_with_neutral, num_embeds)
|
||||
negative_target_splits = split_prompt_embeds(concatenated.negative_target, num_embeds)
|
||||
negative_target_with_neutral_splits = split_prompt_embeds(concatenated.negative_target_with_neutral, num_embeds)
|
||||
neutral_splits = split_prompt_embeds(concatenated.neutral, num_embeds)
|
||||
empty_prompt_splits = split_prompt_embeds(concatenated.empty_prompt, num_embeds)
|
||||
both_targets_splits = split_prompt_embeds(concatenated.both_targets, num_embeds)
|
||||
|
||||
prompt_pairs = []
|
||||
for i in range(len(target_class_splits)):
|
||||
action_list_split = concatenated.action_list[i::len(target_class_splits)]
|
||||
multiplier_list_split = concatenated.multiplier_list[i::len(target_class_splits)]
|
||||
|
||||
prompt_pair = EncodedPromptPair(
|
||||
target_class=target_class_splits[i],
|
||||
target_class_with_neutral=target_class_with_neutral_splits[i],
|
||||
positive_target=positive_target_splits[i],
|
||||
positive_target_with_neutral=positive_target_with_neutral_splits[i],
|
||||
negative_target=negative_target_splits[i],
|
||||
negative_target_with_neutral=negative_target_with_neutral_splits[i],
|
||||
neutral=neutral_splits[i],
|
||||
empty_prompt=empty_prompt_splits[i],
|
||||
both_targets=both_targets_splits[i],
|
||||
action_list=action_list_split,
|
||||
multiplier_list=multiplier_list_split,
|
||||
weight=concatenated.weight
|
||||
)
|
||||
prompt_pairs.append(prompt_pair)
|
||||
|
||||
return prompt_pairs
|
||||
|
||||
|
||||
class PromptEmbedsCache:
|
||||
prompts: dict[str, PromptEmbeds] = {}
|
||||
|
||||
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
|
||||
self.prompts[__name] = __value
|
||||
|
||||
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
|
||||
if __name in self.prompts:
|
||||
return self.prompts[__name]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class EncodedAnchor:
|
||||
def __init__(
|
||||
self,
|
||||
prompt,
|
||||
neg_prompt,
|
||||
multiplier=1.0,
|
||||
multiplier_list=None
|
||||
):
|
||||
self.prompt = prompt
|
||||
self.neg_prompt = neg_prompt
|
||||
self.multiplier = multiplier
|
||||
|
||||
if multiplier_list is not None:
|
||||
self.multiplier_list: list[float] = multiplier_list
|
||||
else:
|
||||
self.multiplier_list: list[float] = [multiplier]
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
self.prompt = self.prompt.to(*args, **kwargs)
|
||||
self.neg_prompt = self.neg_prompt.to(*args, **kwargs)
|
||||
return self
|
||||
|
||||
|
||||
def concat_anchors(anchors: list[EncodedAnchor]):
|
||||
prompt = concat_prompt_embeds([a.prompt for a in anchors])
|
||||
neg_prompt = concat_prompt_embeds([a.neg_prompt for a in anchors])
|
||||
return EncodedAnchor(
|
||||
prompt=prompt,
|
||||
neg_prompt=neg_prompt,
|
||||
multiplier_list=[a.multiplier for a in anchors]
|
||||
)
|
||||
|
||||
|
||||
def split_anchors(concatenated: EncodedAnchor, num_anchors: int = 4) -> List[EncodedAnchor]:
|
||||
prompt_splits = split_prompt_embeds(concatenated.prompt, num_anchors)
|
||||
neg_prompt_splits = split_prompt_embeds(concatenated.neg_prompt, num_anchors)
|
||||
multiplier_list_splits = torch.chunk(torch.tensor(concatenated.multiplier_list), num_anchors)
|
||||
|
||||
anchors = []
|
||||
for prompt, neg_prompt, multiplier in zip(prompt_splits, neg_prompt_splits, multiplier_list_splits):
|
||||
anchor = EncodedAnchor(
|
||||
prompt=prompt,
|
||||
neg_prompt=neg_prompt,
|
||||
multiplier=multiplier.tolist()
|
||||
)
|
||||
anchors.append(anchor)
|
||||
|
||||
return anchors
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.stable_diffusion_model import StableDiffusion
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_prompts_to_cache(
|
||||
prompt_list: list[str],
|
||||
sd: "StableDiffusion",
|
||||
cache: Optional[PromptEmbedsCache] = None,
|
||||
prompt_tensor_file: Optional[str] = None,
|
||||
) -> PromptEmbedsCache:
|
||||
# TODO: add support for larger prompts
|
||||
if cache is None:
|
||||
cache = PromptEmbedsCache()
|
||||
|
||||
if prompt_tensor_file is not None:
|
||||
# check to see if it exists
|
||||
if os.path.exists(prompt_tensor_file):
|
||||
# load it.
|
||||
print(f"Loading prompt tensors from {prompt_tensor_file}")
|
||||
prompt_tensors = load_file(prompt_tensor_file, device='cpu')
|
||||
# add them to the cache
|
||||
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
|
||||
if prompt_txt.startswith("te:"):
|
||||
prompt = prompt_txt[3:]
|
||||
# text_embeds
|
||||
text_embeds = prompt_tensor
|
||||
pooled_embeds = None
|
||||
# find pool embeds
|
||||
if f"pe:{prompt}" in prompt_tensors:
|
||||
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
|
||||
|
||||
# make it
|
||||
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
|
||||
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
|
||||
|
||||
if len(cache.prompts) == 0:
|
||||
print("Prompt tensors not found. Encoding prompts..")
|
||||
empty_prompt = ""
|
||||
# encode empty_prompt
|
||||
cache[empty_prompt] = sd.encode_prompt(empty_prompt)
|
||||
|
||||
for p in tqdm(prompt_list, desc="Encoding prompts", leave=False):
|
||||
# build the cache
|
||||
if cache[p] is None:
|
||||
cache[p] = sd.encode_prompt(p).to(device="cpu", dtype=torch.float16)
|
||||
|
||||
# should we shard? It can get large
|
||||
if prompt_tensor_file:
|
||||
print(f"Saving prompt tensors to {prompt_tensor_file}")
|
||||
state_dict = {}
|
||||
for prompt_txt, prompt_embeds in cache.prompts.items():
|
||||
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to(
|
||||
"cpu", dtype=get_torch_dtype('fp16')
|
||||
)
|
||||
if prompt_embeds.pooled_embeds is not None:
|
||||
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to(
|
||||
"cpu",
|
||||
dtype=get_torch_dtype('fp16')
|
||||
)
|
||||
save_file(state_dict, prompt_tensor_file)
|
||||
|
||||
return cache
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.config_modules import SliderTargetConfig
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def build_prompt_pair_batch_from_cache(
|
||||
cache: PromptEmbedsCache,
|
||||
target: 'SliderTargetConfig',
|
||||
neutral: Optional[str] = '',
|
||||
) -> list[EncodedPromptPair]:
|
||||
erase_negative = len(target.positive.strip()) == 0
|
||||
enhance_positive = len(target.negative.strip()) == 0
|
||||
|
||||
both = not erase_negative and not enhance_positive
|
||||
|
||||
prompt_pair_batch = []
|
||||
|
||||
if both or erase_negative:
|
||||
print("Encoding erase negative")
|
||||
prompt_pair_batch += [
|
||||
# erase standard
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or enhance_positive:
|
||||
print("Encoding enhance positive")
|
||||
prompt_pair_batch += [
|
||||
# enhance standard, swap pos neg
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or enhance_positive:
|
||||
print("Encoding erase positive (inverse)")
|
||||
prompt_pair_batch += [
|
||||
# erase inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or erase_negative:
|
||||
print("Encoding enhance negative (inverse)")
|
||||
prompt_pair_batch += [
|
||||
# enhance inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
both_targets=cache[f"{target.positive} {target.negative}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
|
||||
return prompt_pair_batch
|
||||
@@ -1,6 +1,6 @@
|
||||
import gc
|
||||
import typing
|
||||
from typing import Union, OrderedDict, List
|
||||
from typing import Union, OrderedDict, List, Tuple
|
||||
import sys
|
||||
import os
|
||||
|
||||
@@ -50,10 +50,10 @@ VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
|
||||
|
||||
|
||||
class PromptEmbeds:
|
||||
text_embeds: torch.FloatTensor
|
||||
pooled_embeds: Union[torch.FloatTensor, None]
|
||||
text_embeds: torch.Tensor
|
||||
pooled_embeds: Union[torch.Tensor, None]
|
||||
|
||||
def __init__(self, args) -> None:
|
||||
def __init__(self, args: Union[Tuple[torch.Tensor], List[torch.Tensor], torch.Tensor]) -> None:
|
||||
if isinstance(args, list) or isinstance(args, tuple):
|
||||
# xl
|
||||
self.text_embeds = args[0]
|
||||
@@ -139,12 +139,23 @@ class StableDiffusion:
|
||||
pipln = self.custom_pipeline
|
||||
else:
|
||||
pipln = CustomStableDiffusionXLPipeline
|
||||
pipe = pipln.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='ddpm',
|
||||
device=self.device_torch,
|
||||
).to(self.device_torch)
|
||||
|
||||
# see if path exists
|
||||
if not os.path.exists(self.model_config.name_or_path):
|
||||
# try to load with default diffusers
|
||||
pipe = pipln.from_pretrained(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='ddpm',
|
||||
device=self.device_torch,
|
||||
).to(self.device_torch)
|
||||
else:
|
||||
pipe = pipln.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='ddpm',
|
||||
device=self.device_torch,
|
||||
).to(self.device_torch)
|
||||
|
||||
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
||||
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
|
||||
@@ -158,14 +169,27 @@ class StableDiffusion:
|
||||
pipln = self.custom_pipeline
|
||||
else:
|
||||
pipln = CustomStableDiffusionPipeline
|
||||
pipe = pipln.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='dpm',
|
||||
device=self.device_torch,
|
||||
load_safety_checker=False,
|
||||
requires_safety_checker=False,
|
||||
).to(self.device_torch)
|
||||
|
||||
# see if path exists
|
||||
if not os.path.exists(self.model_config.name_or_path):
|
||||
# try to load with default diffusers
|
||||
pipe = pipln.from_pretrained(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='dpm',
|
||||
device=self.device_torch,
|
||||
load_safety_checker=False,
|
||||
requires_safety_checker=False,
|
||||
).to(self.device_torch)
|
||||
else:
|
||||
pipe = pipln.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='dpm',
|
||||
device=self.device_torch,
|
||||
load_safety_checker=False,
|
||||
requires_safety_checker=False,
|
||||
).to(self.device_torch)
|
||||
pipe.register_to_config(requires_safety_checker=False)
|
||||
text_encoder = pipe.text_encoder
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
|
||||
Reference in New Issue
Block a user