From bfe29e2151ca32d6f1b32f6375b179db1a7155e0 Mon Sep 17 00:00:00 2001 From: Jaret Burkett Date: Fri, 18 Apr 2025 10:39:15 -0600 Subject: [PATCH] Removed all submodules. Submodule free now, yay. --- .gitignore | 3 +- .gitmodules | 4 - README.md | 2 - jobs/GenerateJob.py | 7 - jobs/TrainJob.py | 5 - repositories/sd-scripts | 1 - testing/test_bucket_dataloader.py | 4 - toolkit/custom_adapter.py | 4 - toolkit/kohya_lora.py | 1221 ++++++++++++++++++++++++ toolkit/lora_special.py | 16 +- toolkit/models/single_value_adapter.py | 3 - toolkit/models/wan21/wan21.py | 2 - toolkit/models/wan21/wan21_i2v.py | 1 - toolkit/paths.py | 2 - toolkit/reference_adapter.py | 3 - toolkit/stable_diffusion_model.py | 5 +- toolkit/train_tools.py | 5 - toolkit/util/vae.py | 20 + 18 files changed, 1246 insertions(+), 62 deletions(-) delete mode 160000 repositories/sd-scripts create mode 100644 toolkit/kohya_lora.py create mode 100644 toolkit/util/vae.py diff --git a/.gitignore b/.gitignore index 6f9c6c62..0f02393b 100644 --- a/.gitignore +++ b/.gitignore @@ -179,4 +179,5 @@ cython_debug/ .vscode/settings.json .DS_Store ._.DS_Store -aitk_db.db \ No newline at end of file +aitk_db.db +/notes.md \ No newline at end of file diff --git a/.gitmodules b/.gitmodules index e85c612f..e69de29b 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,4 +0,0 @@ -[submodule "repositories/sd-scripts"] - path = repositories/sd-scripts - url = https://github.com/kohya-ss/sd-scripts.git - commit = b78c0e2a69e52ce6c79abc6c8c82d1a9cabcf05c diff --git a/README.md b/README.md index 431de36c..6bfb7ffb 100644 --- a/README.md +++ b/README.md @@ -37,7 +37,6 @@ Linux: ```bash git clone https://github.com/ostris/ai-toolkit.git cd ai-toolkit -git submodule update --init --recursive python3 -m venv venv source venv/bin/activate # install torch first @@ -49,7 +48,6 @@ Windows: ```bash git clone https://github.com/ostris/ai-toolkit.git cd ai-toolkit -git submodule update --init --recursive python -m venv venv .\venv\Scripts\activate pip install --no-cache-dir torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu126 diff --git a/jobs/GenerateJob.py b/jobs/GenerateJob.py index ab61701a..bd57a6ac 100644 --- a/jobs/GenerateJob.py +++ b/jobs/GenerateJob.py @@ -1,12 +1,5 @@ from jobs import BaseJob from collections import OrderedDict -from typing import List -from jobs.process import GenerateProcess -from toolkit.paths import REPOS_ROOT - -import sys - -sys.path.append(REPOS_ROOT) process_dict = { 'to_folder': 'GenerateProcess', diff --git a/jobs/TrainJob.py b/jobs/TrainJob.py index dda64e2d..b4982d26 100644 --- a/jobs/TrainJob.py +++ b/jobs/TrainJob.py @@ -7,12 +7,7 @@ from collections import OrderedDict from typing import List from jobs.process import BaseExtractProcess, TrainFineTuneProcess from datetime import datetime -import yaml -from toolkit.paths import REPOS_ROOT -import sys - -sys.path.append(REPOS_ROOT) process_dict = { 'vae': 'TrainVAEProcess', diff --git a/repositories/sd-scripts b/repositories/sd-scripts deleted file mode 160000 index b78c0e2a..00000000 --- a/repositories/sd-scripts +++ /dev/null @@ -1 +0,0 @@ -Subproject commit b78c0e2a69e52ce6c79abc6c8c82d1a9cabcf05c diff --git a/testing/test_bucket_dataloader.py b/testing/test_bucket_dataloader.py index 5904968d..9c9adf65 100644 --- a/testing/test_bucket_dataloader.py +++ b/testing/test_bucket_dataloader.py @@ -11,13 +11,9 @@ import random from transformers import CLIPImageProcessor sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) -from toolkit.paths import SD_SCRIPTS_ROOT import torchvision.transforms.functional from toolkit.image_utils import save_tensors, show_img, show_tensors -sys.path.append(SD_SCRIPTS_ROOT) - -from library.model_util import load_vae from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets, \ trigger_dataloader_setup_epoch diff --git a/toolkit/custom_adapter.py b/toolkit/custom_adapter.py index cdb65693..a9ec5d10 100644 --- a/toolkit/custom_adapter.py +++ b/toolkit/custom_adapter.py @@ -19,16 +19,12 @@ from toolkit.models.te_adapter import TEAdapter from toolkit.models.te_aug_adapter import TEAugAdapter from toolkit.models.vd_adapter import VisionDirectAdapter from toolkit.models.redux import ReduxImageEncoder -from toolkit.paths import REPOS_ROOT from toolkit.photomaker import PhotoMakerIDEncoder, FuseModule, PhotoMakerCLIPEncoder from toolkit.saving import load_ip_adapter_model, load_custom_adapter_model from toolkit.train_tools import get_torch_dtype from toolkit.models.pixtral_vision import PixtralVisionEncoderCompatible, PixtralVisionImagePreprocessorCompatible import random - from toolkit.util.mask import generate_random_mask - -sys.path.append(REPOS_ROOT) from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict from collections import OrderedDict from toolkit.config_modules import AdapterConfig, AdapterTypes, TrainConfig diff --git a/toolkit/kohya_lora.py b/toolkit/kohya_lora.py new file mode 100644 index 00000000..b085748a --- /dev/null +++ b/toolkit/kohya_lora.py @@ -0,0 +1,1221 @@ +# LoRA network module +# reference: +# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py +# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py + +# taken from kohya lora sd scripts + +import math +import os +from typing import Dict, List, Optional, Tuple, Type, Union +from diffusers import AutoencoderKL +from transformers import CLIPTextModel +import numpy as np +import torch +import re + + +RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") + + +class LoRAModule(torch.nn.Module): + """ + replaces forward method of the original Linear, instead of replacing the original Linear module. + """ + + def __init__( + self, + lora_name, + org_module: torch.nn.Module, + multiplier=1.0, + lora_dim=4, + alpha=1, + dropout=None, + rank_dropout=None, + module_dropout=None, + ): + """if alpha == 0 or None, alpha is rank (no scaling).""" + super().__init__() + self.lora_name = lora_name + + if org_module.__class__.__name__ == "Conv2d": + in_dim = org_module.in_channels + out_dim = org_module.out_channels + else: + in_dim = org_module.in_features + out_dim = org_module.out_features + + # if limit_rank: + # self.lora_dim = min(lora_dim, in_dim, out_dim) + # if self.lora_dim != lora_dim: + # print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}") + # else: + self.lora_dim = lora_dim + + if org_module.__class__.__name__ == "Conv2d": + kernel_size = org_module.kernel_size + stride = org_module.stride + padding = org_module.padding + self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) + self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) + else: + self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) + self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) + + if type(alpha) == torch.Tensor: + alpha = alpha.detach().float().numpy() # without casting, bf16 causes error + alpha = self.lora_dim if alpha is None or alpha == 0 else alpha + self.scale = alpha / self.lora_dim + self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える + + # same as microsoft's + torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) + torch.nn.init.zeros_(self.lora_up.weight) + + self.multiplier = multiplier + self.org_module = org_module # remove in applying + self.dropout = dropout + self.rank_dropout = rank_dropout + self.module_dropout = module_dropout + + def apply_to(self): + self.org_forward = self.org_module.forward + self.org_module.forward = self.forward + del self.org_module + + def forward(self, x): + org_forwarded = self.org_forward(x) + + # module dropout + if self.module_dropout is not None and self.training: + if torch.rand(1) < self.module_dropout: + return org_forwarded + + lx = self.lora_down(x) + + # normal dropout + if self.dropout is not None and self.training: + lx = torch.nn.functional.dropout(lx, p=self.dropout) + + # rank dropout + if self.rank_dropout is not None and self.training: + mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout + if len(lx.size()) == 3: + mask = mask.unsqueeze(1) # for Text Encoder + elif len(lx.size()) == 4: + mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d + lx = lx * mask + + # scaling for rank dropout: treat as if the rank is changed + # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる + scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability + else: + scale = self.scale + + lx = self.lora_up(lx) + + return org_forwarded + lx * self.multiplier * scale + + +class LoRAInfModule(LoRAModule): + def __init__( + self, + lora_name, + org_module: torch.nn.Module, + multiplier=1.0, + lora_dim=4, + alpha=1, + **kwargs, + ): + # no dropout for inference + super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) + + self.org_module_ref = [org_module] # 後から参照できるように + self.enabled = True + + # check regional or not by lora_name + self.text_encoder = False + if lora_name.startswith("lora_te_"): + self.regional = False + self.use_sub_prompt = True + self.text_encoder = True + elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name: + self.regional = False + self.use_sub_prompt = True + elif "time_emb" in lora_name: + self.regional = False + self.use_sub_prompt = False + else: + self.regional = True + self.use_sub_prompt = False + + self.network: LoRANetwork = None + + def set_network(self, network): + self.network = network + + # freezeしてマージする + def merge_to(self, sd, dtype, device): + # get up/down weight + up_weight = sd["lora_up.weight"].to(torch.float).to(device) + down_weight = sd["lora_down.weight"].to(torch.float).to(device) + + # extract weight from org_module + org_sd = self.org_module.state_dict() + weight = org_sd["weight"].to(torch.float) + + # merge weight + if len(weight.size()) == 2: + # linear + weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale + elif down_weight.size()[2:4] == (1, 1): + # conv2d 1x1 + weight = ( + weight + + self.multiplier + * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) + * self.scale + ) + else: + # conv2d 3x3 + conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) + # print(conved.size(), weight.size(), module.stride, module.padding) + weight = weight + self.multiplier * conved * self.scale + + # set weight to org_module + org_sd["weight"] = weight.to(dtype) + self.org_module.load_state_dict(org_sd) + + # 復元できるマージのため、このモジュールのweightを返す + def get_weight(self, multiplier=None): + if multiplier is None: + multiplier = self.multiplier + + # get up/down weight from module + up_weight = self.lora_up.weight.to(torch.float) + down_weight = self.lora_down.weight.to(torch.float) + + # pre-calculated weight + if len(down_weight.size()) == 2: + # linear + weight = self.multiplier * (up_weight @ down_weight) * self.scale + elif down_weight.size()[2:4] == (1, 1): + # conv2d 1x1 + weight = ( + self.multiplier + * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) + * self.scale + ) + else: + # conv2d 3x3 + conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) + weight = self.multiplier * conved * self.scale + + return weight + + def set_region(self, region): + self.region = region + self.region_mask = None + + def default_forward(self, x): + # print("default_forward", self.lora_name, x.size()) + return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale + + def forward(self, x): + if not self.enabled: + return self.org_forward(x) + + if self.network is None or self.network.sub_prompt_index is None: + return self.default_forward(x) + if not self.regional and not self.use_sub_prompt: + return self.default_forward(x) + + if self.regional: + return self.regional_forward(x) + else: + return self.sub_prompt_forward(x) + + def get_mask_for_x(self, x): + # calculate size from shape of x + if len(x.size()) == 4: + h, w = x.size()[2:4] + area = h * w + else: + area = x.size()[1] + + mask = self.network.mask_dic[area] + if mask is None: + raise ValueError(f"mask is None for resolution {area}") + if len(x.size()) != 4: + mask = torch.reshape(mask, (1, -1, 1)) + return mask + + def regional_forward(self, x): + if "attn2_to_out" in self.lora_name: + return self.to_out_forward(x) + + if self.network.mask_dic is None: # sub_prompt_index >= 3 + return self.default_forward(x) + + # apply mask for LoRA result + lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale + mask = self.get_mask_for_x(lx) + # print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size()) + lx = lx * mask + + x = self.org_forward(x) + x = x + lx + + if "attn2_to_q" in self.lora_name and self.network.is_last_network: + x = self.postp_to_q(x) + + return x + + def postp_to_q(self, x): + # repeat x to num_sub_prompts + has_real_uncond = x.size()[0] // self.network.batch_size == 3 + qc = self.network.batch_size # uncond + qc += self.network.batch_size * self.network.num_sub_prompts # cond + if has_real_uncond: + qc += self.network.batch_size # real_uncond + + query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype) + query[: self.network.batch_size] = x[: self.network.batch_size] + + for i in range(self.network.batch_size): + qi = self.network.batch_size + i * self.network.num_sub_prompts + query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i] + + if has_real_uncond: + query[-self.network.batch_size :] = x[-self.network.batch_size :] + + # print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts) + return query + + def sub_prompt_forward(self, x): + if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA + return self.org_forward(x) + + emb_idx = self.network.sub_prompt_index + if not self.text_encoder: + emb_idx += self.network.batch_size + + # apply sub prompt of X + lx = x[emb_idx :: self.network.num_sub_prompts] + lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale + + # print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx) + + x = self.org_forward(x) + x[emb_idx :: self.network.num_sub_prompts] += lx + + return x + + def to_out_forward(self, x): + # print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network) + + if self.network.is_last_network: + masks = [None] * self.network.num_sub_prompts + self.network.shared[self.lora_name] = (None, masks) + else: + lx, masks = self.network.shared[self.lora_name] + + # call own LoRA + x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts] + lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale + + if self.network.is_last_network: + lx = torch.zeros( + (self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype + ) + self.network.shared[self.lora_name] = (lx, masks) + + # print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts) + lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1 + masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1) + + # if not last network, return x and masks + x = self.org_forward(x) + if not self.network.is_last_network: + return x + + lx, masks = self.network.shared.pop(self.lora_name) + + # if last network, combine separated x with mask weighted sum + has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2 + + out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype) + out[: self.network.batch_size] = x[: self.network.batch_size] # uncond + if has_real_uncond: + out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond + + # print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts) + # for i in range(len(masks)): + # if masks[i] is None: + # masks[i] = torch.zeros_like(masks[-1]) + + mask = torch.cat(masks) + mask_sum = torch.sum(mask, dim=0) + 1e-4 + for i in range(self.network.batch_size): + # 1枚の画像ごとに処理する + lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts] + lx1 = lx1 * mask + lx1 = torch.sum(lx1, dim=0) + + xi = self.network.batch_size + i * self.network.num_sub_prompts + x1 = x[xi : xi + self.network.num_sub_prompts] + x1 = x1 * mask + x1 = torch.sum(x1, dim=0) + x1 = x1 / mask_sum + + x1 = x1 + lx1 + out[self.network.batch_size + i] = x1 + + # print("to_out_forward", x.size(), out.size(), has_real_uncond) + return out + + +def parse_block_lr_kwargs(nw_kwargs): + down_lr_weight = nw_kwargs.get("down_lr_weight", None) + mid_lr_weight = nw_kwargs.get("mid_lr_weight", None) + up_lr_weight = nw_kwargs.get("up_lr_weight", None) + + # 以上のいずれにも設定がない場合は無効としてNoneを返す + if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None: + return None, None, None + + # extract learning rate weight for each block + if down_lr_weight is not None: + # if some parameters are not set, use zero + if "," in down_lr_weight: + down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")] + + if mid_lr_weight is not None: + mid_lr_weight = float(mid_lr_weight) + + if up_lr_weight is not None: + if "," in up_lr_weight: + up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")] + + down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight( + down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0)) + ) + + return down_lr_weight, mid_lr_weight, up_lr_weight + + +def create_network( + multiplier: float, + network_dim: Optional[int], + network_alpha: Optional[float], + vae: AutoencoderKL, + text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], + unet, + neuron_dropout: Optional[float] = None, + **kwargs, +): + if network_dim is None: + network_dim = 4 # default + if network_alpha is None: + network_alpha = 1.0 + + # extract dim/alpha for conv2d, and block dim + conv_dim = kwargs.get("conv_dim", None) + conv_alpha = kwargs.get("conv_alpha", None) + if conv_dim is not None: + conv_dim = int(conv_dim) + if conv_alpha is None: + conv_alpha = 1.0 + else: + conv_alpha = float(conv_alpha) + + # block dim/alpha/lr + block_dims = kwargs.get("block_dims", None) + down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) + + # 以上のいずれかに指定があればblockごとのdim(rank)を有効にする + if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None: + block_alphas = kwargs.get("block_alphas", None) + conv_block_dims = kwargs.get("conv_block_dims", None) + conv_block_alphas = kwargs.get("conv_block_alphas", None) + + block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas( + block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha + ) + + # remove block dim/alpha without learning rate + block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas( + block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight + ) + + else: + block_alphas = None + conv_block_dims = None + conv_block_alphas = None + + # rank/module dropout + rank_dropout = kwargs.get("rank_dropout", None) + if rank_dropout is not None: + rank_dropout = float(rank_dropout) + module_dropout = kwargs.get("module_dropout", None) + if module_dropout is not None: + module_dropout = float(module_dropout) + + # すごく引数が多いな ( ^ω^)・・・ + network = LoRANetwork( + text_encoder, + unet, + multiplier=multiplier, + lora_dim=network_dim, + alpha=network_alpha, + dropout=neuron_dropout, + rank_dropout=rank_dropout, + module_dropout=module_dropout, + conv_lora_dim=conv_dim, + conv_alpha=conv_alpha, + block_dims=block_dims, + block_alphas=block_alphas, + conv_block_dims=conv_block_dims, + conv_block_alphas=conv_block_alphas, + varbose=True, + ) + + if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: + network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) + + return network + + +# このメソッドは外部から呼び出される可能性を考慮しておく +# network_dim, network_alpha にはデフォルト値が入っている。 +# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている +# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている +def get_block_dims_and_alphas( + block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha +): + num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1 + + def parse_ints(s): + return [int(i) for i in s.split(",")] + + def parse_floats(s): + return [float(i) for i in s.split(",")] + + # block_dimsとblock_alphasをパースする。必ず値が入る + if block_dims is not None: + block_dims = parse_ints(block_dims) + assert ( + len(block_dims) == num_total_blocks + ), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください" + else: + print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります") + block_dims = [network_dim] * num_total_blocks + + if block_alphas is not None: + block_alphas = parse_floats(block_alphas) + assert ( + len(block_alphas) == num_total_blocks + ), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください" + else: + print( + f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります" + ) + block_alphas = [network_alpha] * num_total_blocks + + # conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う + if conv_block_dims is not None: + conv_block_dims = parse_ints(conv_block_dims) + assert ( + len(conv_block_dims) == num_total_blocks + ), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください" + + if conv_block_alphas is not None: + conv_block_alphas = parse_floats(conv_block_alphas) + assert ( + len(conv_block_alphas) == num_total_blocks + ), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください" + else: + if conv_alpha is None: + conv_alpha = 1.0 + print( + f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります" + ) + conv_block_alphas = [conv_alpha] * num_total_blocks + else: + if conv_dim is not None: + print( + f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります" + ) + conv_block_dims = [conv_dim] * num_total_blocks + conv_block_alphas = [conv_alpha] * num_total_blocks + else: + conv_block_dims = None + conv_block_alphas = None + + return block_dims, block_alphas, conv_block_dims, conv_block_alphas + + +# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく +def get_block_lr_weight( + down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold +) -> Tuple[List[float], List[float], List[float]]: + # パラメータ未指定時は何もせず、今までと同じ動作とする + if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None: + return None, None, None + + max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数 + + def get_list(name_with_suffix) -> List[float]: + import math + + tokens = name_with_suffix.split("+") + name = tokens[0] + base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0 + + if name == "cosine": + return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))] + elif name == "sine": + return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)] + elif name == "linear": + return [i / (max_len - 1) + base_lr for i in range(max_len)] + elif name == "reverse_linear": + return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))] + elif name == "zeros": + return [0.0 + base_lr] * max_len + else: + print( + "Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros" + % (name) + ) + return None + + if type(down_lr_weight) == str: + down_lr_weight = get_list(down_lr_weight) + if type(up_lr_weight) == str: + up_lr_weight = get_list(up_lr_weight) + + if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len): + print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len) + print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len) + up_lr_weight = up_lr_weight[:max_len] + down_lr_weight = down_lr_weight[:max_len] + + if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len): + print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len) + print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len) + + if down_lr_weight != None and len(down_lr_weight) < max_len: + down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight)) + if up_lr_weight != None and len(up_lr_weight) < max_len: + up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight)) + + if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None): + print("apply block learning rate / 階層別学習率を適用します。") + if down_lr_weight != None: + down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight] + print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight) + else: + print("down_lr_weight: all 1.0, すべて1.0") + + if mid_lr_weight != None: + mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0 + print("mid_lr_weight:", mid_lr_weight) + else: + print("mid_lr_weight: 1.0") + + if up_lr_weight != None: + up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight] + print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight) + else: + print("up_lr_weight: all 1.0, すべて1.0") + + return down_lr_weight, mid_lr_weight, up_lr_weight + + +# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく +def remove_block_dims_and_alphas( + block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight +): + # set 0 to block dim without learning rate to remove the block + if down_lr_weight != None: + for i, lr in enumerate(down_lr_weight): + if lr == 0: + block_dims[i] = 0 + if conv_block_dims is not None: + conv_block_dims[i] = 0 + if mid_lr_weight != None: + if mid_lr_weight == 0: + block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 + if conv_block_dims is not None: + conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 + if up_lr_weight != None: + for i, lr in enumerate(up_lr_weight): + if lr == 0: + block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 + if conv_block_dims is not None: + conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 + + return block_dims, block_alphas, conv_block_dims, conv_block_alphas + + +# 外部から呼び出す可能性を考慮しておく +def get_block_index(lora_name: str) -> int: + block_idx = -1 # invalid lora name + + m = RE_UPDOWN.search(lora_name) + if m: + g = m.groups() + i = int(g[1]) + j = int(g[3]) + if g[2] == "resnets": + idx = 3 * i + j + elif g[2] == "attentions": + idx = 3 * i + j + elif g[2] == "upsamplers" or g[2] == "downsamplers": + idx = 3 * i + 2 + + if g[0] == "down": + block_idx = 1 + idx # 0に該当するLoRAは存在しない + elif g[0] == "up": + block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx + + elif "mid_block_" in lora_name: + block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12 + + return block_idx + + +# Create network from weights for inference, weights are not loaded here (because can be merged) +def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): + if weights_sd is None: + if os.path.splitext(file)[1] == ".safetensors": + from safetensors.torch import load_file, safe_open + + weights_sd = load_file(file) + else: + weights_sd = torch.load(file, map_location="cpu") + + # get dim/alpha mapping + modules_dim = {} + modules_alpha = {} + for key, value in weights_sd.items(): + if "." not in key: + continue + + lora_name = key.split(".")[0] + if "alpha" in key: + modules_alpha[lora_name] = value + elif "lora_down" in key: + dim = value.size()[0] + modules_dim[lora_name] = dim + # print(lora_name, value.size(), dim) + + # support old LoRA without alpha + for key in modules_dim.keys(): + if key not in modules_alpha: + modules_alpha[key] = modules_dim[key] + + module_class = LoRAInfModule if for_inference else LoRAModule + + network = LoRANetwork( + text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class + ) + + # block lr + down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) + if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: + network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) + + return network, weights_sd + + +class LoRANetwork(torch.nn.Module): + NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数 + + UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] + UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] + TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] + LORA_PREFIX_UNET = "lora_unet" + LORA_PREFIX_TEXT_ENCODER = "lora_te" + + # SDXL: must starts with LORA_PREFIX_TEXT_ENCODER + LORA_PREFIX_TEXT_ENCODER1 = "lora_te1" + LORA_PREFIX_TEXT_ENCODER2 = "lora_te2" + + def __init__( + self, + text_encoder: Union[List[CLIPTextModel], CLIPTextModel], + unet, + multiplier: float = 1.0, + lora_dim: int = 4, + alpha: float = 1, + dropout: Optional[float] = None, + rank_dropout: Optional[float] = None, + module_dropout: Optional[float] = None, + conv_lora_dim: Optional[int] = None, + conv_alpha: Optional[float] = None, + block_dims: Optional[List[int]] = None, + block_alphas: Optional[List[float]] = None, + conv_block_dims: Optional[List[int]] = None, + conv_block_alphas: Optional[List[float]] = None, + modules_dim: Optional[Dict[str, int]] = None, + modules_alpha: Optional[Dict[str, int]] = None, + module_class: Type[object] = LoRAModule, + varbose: Optional[bool] = False, + ) -> None: + """ + LoRA network: すごく引数が多いが、パターンは以下の通り + 1. lora_dimとalphaを指定 + 2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 + 3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない + 4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する + 5. modules_dimとmodules_alphaを指定 (推論用) + """ + super().__init__() + self.multiplier = multiplier + + self.lora_dim = lora_dim + self.alpha = alpha + self.conv_lora_dim = conv_lora_dim + self.conv_alpha = conv_alpha + self.dropout = dropout + self.rank_dropout = rank_dropout + self.module_dropout = module_dropout + + if modules_dim is not None: + print(f"create LoRA network from weights") + elif block_dims is not None: + print(f"create LoRA network from block_dims") + print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") + print(f"block_dims: {block_dims}") + print(f"block_alphas: {block_alphas}") + if conv_block_dims is not None: + print(f"conv_block_dims: {conv_block_dims}") + print(f"conv_block_alphas: {conv_block_alphas}") + else: + print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") + print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") + if self.conv_lora_dim is not None: + print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") + + # create module instances + def create_modules( + is_unet: bool, + text_encoder_idx: Optional[int], # None, 1, 2 + root_module: torch.nn.Module, + target_replace_modules: List[torch.nn.Module], + ) -> List[LoRAModule]: + prefix = ( + self.LORA_PREFIX_UNET + if is_unet + else ( + self.LORA_PREFIX_TEXT_ENCODER + if text_encoder_idx is None + else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2) + ) + ) + loras = [] + skipped = [] + for name, module in root_module.named_modules(): + if module.__class__.__name__ in target_replace_modules: + for child_name, child_module in module.named_modules(): + is_linear = child_module.__class__.__name__ == "Linear" + is_conv2d = child_module.__class__.__name__ == "Conv2d" + is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) + + if is_linear or is_conv2d: + lora_name = prefix + "." + name + "." + child_name + lora_name = lora_name.replace(".", "_") + + dim = None + alpha = None + + if modules_dim is not None: + # モジュール指定あり + if lora_name in modules_dim: + dim = modules_dim[lora_name] + alpha = modules_alpha[lora_name] + elif is_unet and block_dims is not None: + # U-Netでblock_dims指定あり + block_idx = get_block_index(lora_name) + if is_linear or is_conv2d_1x1: + dim = block_dims[block_idx] + alpha = block_alphas[block_idx] + elif conv_block_dims is not None: + dim = conv_block_dims[block_idx] + alpha = conv_block_alphas[block_idx] + else: + # 通常、すべて対象とする + if is_linear or is_conv2d_1x1: + dim = self.lora_dim + alpha = self.alpha + elif self.conv_lora_dim is not None: + dim = self.conv_lora_dim + alpha = self.conv_alpha + + if dim is None or dim == 0: + # skipした情報を出力 + if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None): + skipped.append(lora_name) + continue + + lora = module_class( + lora_name, + child_module, + self.multiplier, + dim, + alpha, + dropout=dropout, + rank_dropout=rank_dropout, + module_dropout=module_dropout, + ) + loras.append(lora) + return loras, skipped + + text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] + + # create LoRA for text encoder + # 毎回すべてのモジュールを作るのは無駄なので要検討 + self.text_encoder_loras = [] + skipped_te = [] + for i, text_encoder in enumerate(text_encoders): + if len(text_encoders) > 1: + index = i + 1 + print(f"create LoRA for Text Encoder {index}:") + else: + index = None + print(f"create LoRA for Text Encoder:") + + text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) + self.text_encoder_loras.extend(text_encoder_loras) + skipped_te += skipped + print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") + + # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights + target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE + if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: + target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 + + self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules) + print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") + + skipped = skipped_te + skipped_un + if varbose and len(skipped) > 0: + print( + f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" + ) + for name in skipped: + print(f"\t{name}") + + self.up_lr_weight: List[float] = None + self.down_lr_weight: List[float] = None + self.mid_lr_weight: float = None + self.block_lr = False + + # assertion + names = set() + for lora in self.text_encoder_loras + self.unet_loras: + assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" + names.add(lora.lora_name) + + def set_multiplier(self, multiplier): + self.multiplier = multiplier + for lora in self.text_encoder_loras + self.unet_loras: + lora.multiplier = self.multiplier + + def load_weights(self, file): + if os.path.splitext(file)[1] == ".safetensors": + from safetensors.torch import load_file + + weights_sd = load_file(file) + else: + weights_sd = torch.load(file, map_location="cpu") + + info = self.load_state_dict(weights_sd, False) + return info + + def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): + if apply_text_encoder: + print("enable LoRA for text encoder") + else: + self.text_encoder_loras = [] + + if apply_unet: + print("enable LoRA for U-Net") + else: + self.unet_loras = [] + + for lora in self.text_encoder_loras + self.unet_loras: + lora.apply_to() + self.add_module(lora.lora_name, lora) + + # マージできるかどうかを返す + def is_mergeable(self): + return True + + # TODO refactor to common function with apply_to + def merge_to(self, text_encoder, unet, weights_sd, dtype, device): + apply_text_encoder = apply_unet = False + for key in weights_sd.keys(): + if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER): + apply_text_encoder = True + elif key.startswith(LoRANetwork.LORA_PREFIX_UNET): + apply_unet = True + + if apply_text_encoder: + print("enable LoRA for text encoder") + else: + self.text_encoder_loras = [] + + if apply_unet: + print("enable LoRA for U-Net") + else: + self.unet_loras = [] + + for lora in self.text_encoder_loras + self.unet_loras: + sd_for_lora = {} + for key in weights_sd.keys(): + if key.startswith(lora.lora_name): + sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] + lora.merge_to(sd_for_lora, dtype, device) + + print(f"weights are merged") + + # 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない + def set_block_lr_weight( + self, + up_lr_weight: List[float] = None, + mid_lr_weight: float = None, + down_lr_weight: List[float] = None, + ): + self.block_lr = True + self.down_lr_weight = down_lr_weight + self.mid_lr_weight = mid_lr_weight + self.up_lr_weight = up_lr_weight + + def get_lr_weight(self, lora: LoRAModule) -> float: + lr_weight = 1.0 + block_idx = get_block_index(lora.lora_name) + if block_idx < 0: + return lr_weight + + if block_idx < LoRANetwork.NUM_OF_BLOCKS: + if self.down_lr_weight != None: + lr_weight = self.down_lr_weight[block_idx] + elif block_idx == LoRANetwork.NUM_OF_BLOCKS: + if self.mid_lr_weight != None: + lr_weight = self.mid_lr_weight + elif block_idx > LoRANetwork.NUM_OF_BLOCKS: + if self.up_lr_weight != None: + lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1] + + return lr_weight + + # 二つのText Encoderに別々の学習率を設定できるようにするといいかも + def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): + self.requires_grad_(True) + all_params = [] + + def enumerate_params(loras): + params = [] + for lora in loras: + params.extend(lora.parameters()) + return params + + if self.text_encoder_loras: + param_data = {"params": enumerate_params(self.text_encoder_loras)} + if text_encoder_lr is not None: + param_data["lr"] = text_encoder_lr + all_params.append(param_data) + + if self.unet_loras: + if self.block_lr: + # 学習率のグラフをblockごとにしたいので、blockごとにloraを分類 + block_idx_to_lora = {} + for lora in self.unet_loras: + idx = get_block_index(lora.lora_name) + if idx not in block_idx_to_lora: + block_idx_to_lora[idx] = [] + block_idx_to_lora[idx].append(lora) + + # blockごとにパラメータを設定する + for idx, block_loras in block_idx_to_lora.items(): + param_data = {"params": enumerate_params(block_loras)} + + if unet_lr is not None: + param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0]) + elif default_lr is not None: + param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0]) + if ("lr" in param_data) and (param_data["lr"] == 0): + continue + all_params.append(param_data) + + else: + param_data = {"params": enumerate_params(self.unet_loras)} + if unet_lr is not None: + param_data["lr"] = unet_lr + all_params.append(param_data) + + return all_params + + def enable_gradient_checkpointing(self): + # not supported + pass + + def prepare_grad_etc(self, text_encoder, unet): + self.requires_grad_(True) + + def on_epoch_start(self, text_encoder, unet): + self.train() + + def get_trainable_params(self): + return self.parameters() + + def save_weights(self, file, dtype, metadata): + if metadata is not None and len(metadata) == 0: + metadata = None + + state_dict = self.state_dict() + + if dtype is not None: + for key in list(state_dict.keys()): + v = state_dict[key] + v = v.detach().clone().to("cpu").to(dtype) + state_dict[key] = v + + if os.path.splitext(file)[1] == ".safetensors": + from safetensors.torch import save_file + + # Precalculate model hashes to save time on indexing + if metadata is None: + metadata = {} + # model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) + # metadata["sshs_model_hash"] = model_hash + # metadata["sshs_legacy_hash"] = legacy_hash + + save_file(state_dict, file, metadata) + else: + torch.save(state_dict, file) + + # mask is a tensor with values from 0 to 1 + def set_region(self, sub_prompt_index, is_last_network, mask): + if mask.max() == 0: + mask = torch.ones_like(mask) + + self.mask = mask + self.sub_prompt_index = sub_prompt_index + self.is_last_network = is_last_network + + for lora in self.text_encoder_loras + self.unet_loras: + lora.set_network(self) + + def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared): + self.batch_size = batch_size + self.num_sub_prompts = num_sub_prompts + self.current_size = (height, width) + self.shared = shared + + # create masks + mask = self.mask + mask_dic = {} + mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w + ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight + dtype = ref_weight.dtype + device = ref_weight.device + + def resize_add(mh, mw): + # print(mh, mw, mh * mw) + m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16 + m = m.to(device, dtype=dtype) + mask_dic[mh * mw] = m + + h = height // 8 + w = width // 8 + for _ in range(4): + resize_add(h, w) + if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2 + resize_add(h + h % 2, w + w % 2) + h = (h + 1) // 2 + w = (w + 1) // 2 + + self.mask_dic = mask_dic + + def backup_weights(self): + # 重みのバックアップを行う + loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras + for lora in loras: + org_module = lora.org_module_ref[0] + if not hasattr(org_module, "_lora_org_weight"): + sd = org_module.state_dict() + org_module._lora_org_weight = sd["weight"].detach().clone() + org_module._lora_restored = True + + def restore_weights(self): + # 重みのリストアを行う + loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras + for lora in loras: + org_module = lora.org_module_ref[0] + if not org_module._lora_restored: + sd = org_module.state_dict() + sd["weight"] = org_module._lora_org_weight + org_module.load_state_dict(sd) + org_module._lora_restored = True + + def pre_calculation(self): + # 事前計算を行う + loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras + for lora in loras: + org_module = lora.org_module_ref[0] + sd = org_module.state_dict() + + org_weight = sd["weight"] + lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) + sd["weight"] = org_weight + lora_weight + assert sd["weight"].shape == org_weight.shape + org_module.load_state_dict(sd) + + org_module._lora_restored = False + lora.enabled = False + + def apply_max_norm_regularization(self, max_norm_value, device): + downkeys = [] + upkeys = [] + alphakeys = [] + norms = [] + keys_scaled = 0 + + state_dict = self.state_dict() + for key in state_dict.keys(): + if "lora_down" in key and "weight" in key: + downkeys.append(key) + upkeys.append(key.replace("lora_down", "lora_up")) + alphakeys.append(key.replace("lora_down.weight", "alpha")) + + for i in range(len(downkeys)): + down = state_dict[downkeys[i]].to(device) + up = state_dict[upkeys[i]].to(device) + alpha = state_dict[alphakeys[i]].to(device) + dim = down.shape[0] + scale = alpha / dim + + if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): + updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) + elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): + updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) + else: + updown = up @ down + + updown *= scale + + norm = updown.norm().clamp(min=max_norm_value / 2) + desired = torch.clamp(norm, max=max_norm_value) + ratio = desired.cpu() / norm.cpu() + sqrt_ratio = ratio**0.5 + if ratio != 1: + keys_scaled += 1 + state_dict[upkeys[i]] *= sqrt_ratio + state_dict[downkeys[i]] *= sqrt_ratio + scalednorm = updown.norm() * ratio + norms.append(scalednorm.item()) + + return keys_scaled, sum(norms) / len(norms), max(norms) diff --git a/toolkit/lora_special.py b/toolkit/lora_special.py index 03bbc949..b0c2d7f4 100644 --- a/toolkit/lora_special.py +++ b/toolkit/lora_special.py @@ -14,16 +14,11 @@ from toolkit.models.lokr import LokrModule from .config_modules import NetworkConfig from .lorm import count_parameters from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin -from .paths import SD_SCRIPTS_ROOT -sys.path.append(SD_SCRIPTS_ROOT) - -from networks.lora import LoRANetwork, get_block_index +from toolkit.kohya_lora import LoRANetwork from toolkit.models.DoRA import DoRAModule from typing import TYPE_CHECKING -from torch.utils.checkpoint import checkpoint - if TYPE_CHECKING: from toolkit.stable_diffusion_model import StableDiffusion @@ -389,15 +384,6 @@ class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork): if lora_name in modules_dim: dim = modules_dim[lora_name] alpha = modules_alpha[lora_name] - elif is_unet and block_dims is not None: - # U-Netでblock_dims指定あり - block_idx = get_block_index(lora_name) - if is_linear or is_conv2d_1x1: - dim = block_dims[block_idx] - alpha = block_alphas[block_idx] - elif conv_block_dims is not None: - dim = conv_block_dims[block_idx] - alpha = conv_block_alphas[block_idx] else: # 通常、すべて対象とする if is_linear or is_conv2d_1x1: diff --git a/toolkit/models/single_value_adapter.py b/toolkit/models/single_value_adapter.py index 9284d020..4fa73944 100644 --- a/toolkit/models/single_value_adapter.py +++ b/toolkit/models/single_value_adapter.py @@ -7,9 +7,6 @@ import weakref from typing import Union, TYPE_CHECKING from diffusers import Transformer2DModel -from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection -from toolkit.paths import REPOS_ROOT -sys.path.append(REPOS_ROOT) if TYPE_CHECKING: diff --git a/toolkit/models/wan21/wan21.py b/toolkit/models/wan21/wan21.py index fce77dca..04eca827 100644 --- a/toolkit/models/wan21/wan21.py +++ b/toolkit/models/wan21/wan21.py @@ -8,7 +8,6 @@ from toolkit.config_modules import GenerateImageConfig, ModelConfig from toolkit.dequantize import patch_dequantization_on_save from toolkit.models.base_model import BaseModel from toolkit.prompt_utils import PromptEmbeds -from toolkit.paths import REPOS_ROOT from transformers import AutoTokenizer, UMT5EncoderModel from diffusers import AutoencoderKLWan, WanPipeline, WanTransformer3DModel import os @@ -34,7 +33,6 @@ from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler from typing import TYPE_CHECKING, List from toolkit.accelerator import unwrap_model from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler -from torchvision.transforms import Resize, ToPILImage from tqdm import tqdm import torch.nn.functional as F from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput diff --git a/toolkit/models/wan21/wan21_i2v.py b/toolkit/models/wan21/wan21_i2v.py index 2bd23b2a..b2b3afd6 100644 --- a/toolkit/models/wan21/wan21_i2v.py +++ b/toolkit/models/wan21/wan21_i2v.py @@ -6,7 +6,6 @@ from toolkit.accelerator import unwrap_model from toolkit.basic import flush from toolkit.config_modules import GenerateImageConfig, ModelConfig from toolkit.prompt_utils import PromptEmbeds -from toolkit.paths import REPOS_ROOT from transformers import AutoTokenizer, UMT5EncoderModel from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTransformer3DModel import os diff --git a/toolkit/paths.py b/toolkit/paths.py index b926c82f..4b2376d6 100644 --- a/toolkit/paths.py +++ b/toolkit/paths.py @@ -2,8 +2,6 @@ import os TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config') -SD_SCRIPTS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories", "sd-scripts") -REPOS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories") KEYMAPS_ROOT = os.path.join(TOOLKIT_ROOT, "toolkit", "keymaps") ORIG_CONFIGS_ROOT = os.path.join(TOOLKIT_ROOT, "toolkit", "orig_configs") DIFFUSERS_CONFIGS_ROOT = os.path.join(TOOLKIT_ROOT, "toolkit", "diffusers_configs") diff --git a/toolkit/reference_adapter.py b/toolkit/reference_adapter.py index ec7b26f3..7de0541f 100644 --- a/toolkit/reference_adapter.py +++ b/toolkit/reference_adapter.py @@ -8,11 +8,8 @@ from torch.nn import Parameter from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from toolkit.basic import adain -from toolkit.paths import REPOS_ROOT from toolkit.saving import load_ip_adapter_model from toolkit.train_tools import get_torch_dtype - -sys.path.append(REPOS_ROOT) from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict from collections import OrderedDict from toolkit.config_modules import AdapterConfig diff --git a/toolkit/stable_diffusion_model.py b/toolkit/stable_diffusion_model.py index 5f66db51..a3f3dcec 100644 --- a/toolkit/stable_diffusion_model.py +++ b/toolkit/stable_diffusion_model.py @@ -26,13 +26,12 @@ from toolkit.clip_vision_adapter import ClipVisionAdapter from toolkit.custom_adapter import CustomAdapter from toolkit.dequantize import patch_dequantization_on_save from toolkit.ip_adapter import IPAdapter -from library.model_util import convert_unet_state_dict_to_sd, convert_text_encoder_state_dict_to_sd_v2, \ - convert_vae_state_dict, load_vae +from toolkit.util.vae import load_vae from toolkit import train_tools from toolkit.config_modules import ModelConfig, GenerateImageConfig, ModelArch from toolkit.metadata import get_meta_for_safetensors from toolkit.models.decorator import Decorator -from toolkit.paths import REPOS_ROOT, KEYMAPS_ROOT +from toolkit.paths import KEYMAPS_ROOT from toolkit.prompt_utils import inject_trigger_into_prompt, PromptEmbeds, concat_prompt_embeds from toolkit.reference_adapter import ReferenceAdapter from toolkit.sampler import get_sampler diff --git a/toolkit/train_tools.py b/toolkit/train_tools.py index d5226b86..e7c50beb 100644 --- a/toolkit/train_tools.py +++ b/toolkit/train_tools.py @@ -6,11 +6,6 @@ import time from typing import TYPE_CHECKING, Union, List import sys -from torch.cuda.amp import GradScaler - -from toolkit.paths import SD_SCRIPTS_ROOT - -sys.path.append(SD_SCRIPTS_ROOT) from diffusers import ( DDPMScheduler, diff --git a/toolkit/util/vae.py b/toolkit/util/vae.py new file mode 100644 index 00000000..2681c6db --- /dev/null +++ b/toolkit/util/vae.py @@ -0,0 +1,20 @@ +from diffusers import AutoencoderKL + + +def load_vae(vae_path, dtype): + try: + vae = AutoencoderKL.from_pretrained( + vae_path, + torch_dtype=dtype, + ) + except Exception as e: + try: + vae = AutoencoderKL.from_pretrained( + vae_path.vae_path, + subfolder="vae", + torch_dtype=dtype, + ) + except Exception as e: + raise ValueError(f"Failed to load VAE from {vae_path}: {e}") + vae.to(dtype) + return vae