mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Initial commit
This commit is contained in:
0
toolkit/__init__.py
Normal file
0
toolkit/__init__.py
Normal file
39
toolkit/config.py
Normal file
39
toolkit/config.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import os
|
||||
import json
|
||||
from toolkit.paths import TOOLKIT_ROOT
|
||||
|
||||
possible_extensions = ['.json', '.jsonc']
|
||||
|
||||
|
||||
def get_cwd_abs_path(path):
|
||||
if not os.path.isabs(path):
|
||||
path = os.path.join(os.getcwd(), path)
|
||||
return path
|
||||
|
||||
|
||||
def get_config(config_file_path):
|
||||
# first check if it is in the config folder
|
||||
config_path = os.path.join(TOOLKIT_ROOT, 'config', config_file_path)
|
||||
# see if it is in the config folder with any of the possible extensions if it doesnt have one
|
||||
real_config_path = None
|
||||
if not os.path.exists(config_path):
|
||||
for ext in possible_extensions:
|
||||
if os.path.exists(config_path + ext):
|
||||
real_config_path = config_path + ext
|
||||
break
|
||||
|
||||
# if we didn't find it there, check if it is a full path
|
||||
if not real_config_path:
|
||||
if os.path.exists(config_file_path):
|
||||
real_config_path = config_file_path
|
||||
elif os.path.exists(get_cwd_abs_path(config_file_path)):
|
||||
real_config_path = get_cwd_abs_path(config_file_path)
|
||||
|
||||
if not real_config_path:
|
||||
raise ValueError(f"Could not find config file {config_file_path}")
|
||||
|
||||
# load the config
|
||||
with open(real_config_path, 'r') as f:
|
||||
config = json.load(f)
|
||||
|
||||
return config
|
||||
1180
toolkit/kohya_model_util.py
Normal file
1180
toolkit/kohya_model_util.py
Normal file
File diff suppressed because it is too large
Load Diff
512
toolkit/lycoris_utils.py
Normal file
512
toolkit/lycoris_utils.py
Normal file
@@ -0,0 +1,512 @@
|
||||
# heavily based on https://github.com/KohakuBlueleaf/LyCORIS/blob/main/lycoris/utils.py
|
||||
|
||||
from typing import *
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import torch.linalg as linalg
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def make_sparse(t: torch.Tensor, sparsity=0.95):
|
||||
abs_t = torch.abs(t)
|
||||
np_array = abs_t.detach().cpu().numpy()
|
||||
quan = float(np.quantile(np_array, sparsity))
|
||||
sparse_t = t.masked_fill(abs_t < quan, 0)
|
||||
return sparse_t
|
||||
|
||||
|
||||
def extract_conv(
|
||||
weight: Union[torch.Tensor, nn.Parameter],
|
||||
mode='fixed',
|
||||
mode_param=0,
|
||||
device='cpu',
|
||||
is_cp=False,
|
||||
) -> Tuple[nn.Parameter, nn.Parameter]:
|
||||
weight = weight.to(device)
|
||||
out_ch, in_ch, kernel_size, _ = weight.shape
|
||||
|
||||
U, S, Vh = linalg.svd(weight.reshape(out_ch, -1))
|
||||
|
||||
if mode == 'fixed':
|
||||
lora_rank = mode_param
|
||||
elif mode == 'threshold':
|
||||
assert mode_param >= 0
|
||||
lora_rank = torch.sum(S > mode_param)
|
||||
elif mode == 'ratio':
|
||||
assert 1 >= mode_param >= 0
|
||||
min_s = torch.max(S) * mode_param
|
||||
lora_rank = torch.sum(S > min_s)
|
||||
elif mode == 'quantile' or mode == 'percentile':
|
||||
assert 1 >= mode_param >= 0
|
||||
s_cum = torch.cumsum(S, dim=0)
|
||||
min_cum_sum = mode_param * torch.sum(S)
|
||||
lora_rank = torch.sum(s_cum < min_cum_sum)
|
||||
else:
|
||||
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
|
||||
lora_rank = max(1, lora_rank)
|
||||
lora_rank = min(out_ch, in_ch, lora_rank)
|
||||
if lora_rank >= out_ch / 2 and not is_cp:
|
||||
return weight, 'full'
|
||||
|
||||
U = U[:, :lora_rank]
|
||||
S = S[:lora_rank]
|
||||
U = U @ torch.diag(S)
|
||||
Vh = Vh[:lora_rank, :]
|
||||
|
||||
diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
|
||||
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
|
||||
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
|
||||
del U, S, Vh, weight
|
||||
return (extract_weight_A, extract_weight_B, diff), 'low rank'
|
||||
|
||||
|
||||
def extract_linear(
|
||||
weight: Union[torch.Tensor, nn.Parameter],
|
||||
mode='fixed',
|
||||
mode_param=0,
|
||||
device='cpu',
|
||||
) -> Tuple[nn.Parameter, nn.Parameter]:
|
||||
weight = weight.to(device)
|
||||
out_ch, in_ch = weight.shape
|
||||
|
||||
U, S, Vh = linalg.svd(weight)
|
||||
|
||||
if mode == 'fixed':
|
||||
lora_rank = mode_param
|
||||
elif mode == 'threshold':
|
||||
assert mode_param >= 0
|
||||
lora_rank = torch.sum(S > mode_param)
|
||||
elif mode == 'ratio':
|
||||
assert 1 >= mode_param >= 0
|
||||
min_s = torch.max(S) * mode_param
|
||||
lora_rank = torch.sum(S > min_s)
|
||||
elif mode == 'quantile' or mode == 'percentile':
|
||||
assert 1 >= mode_param >= 0
|
||||
s_cum = torch.cumsum(S, dim=0)
|
||||
min_cum_sum = mode_param * torch.sum(S)
|
||||
lora_rank = torch.sum(s_cum < min_cum_sum)
|
||||
else:
|
||||
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
|
||||
lora_rank = max(1, lora_rank)
|
||||
lora_rank = min(out_ch, in_ch, lora_rank)
|
||||
if lora_rank >= out_ch / 2:
|
||||
return weight, 'full'
|
||||
|
||||
U = U[:, :lora_rank]
|
||||
S = S[:lora_rank]
|
||||
U = U @ torch.diag(S)
|
||||
Vh = Vh[:lora_rank, :]
|
||||
|
||||
diff = (weight - U @ Vh).detach()
|
||||
extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
|
||||
extract_weight_B = U.reshape(out_ch, lora_rank).detach()
|
||||
del U, S, Vh, weight
|
||||
return (extract_weight_A, extract_weight_B, diff), 'low rank'
|
||||
|
||||
|
||||
def extract_diff(
|
||||
base_model,
|
||||
db_model,
|
||||
mode='fixed',
|
||||
linear_mode_param=0,
|
||||
conv_mode_param=0,
|
||||
extract_device='cpu',
|
||||
use_bias=False,
|
||||
sparsity=0.98,
|
||||
small_conv=True
|
||||
):
|
||||
meta = {}
|
||||
|
||||
UNET_TARGET_REPLACE_MODULE = [
|
||||
"Transformer2DModel",
|
||||
"Attention",
|
||||
"ResnetBlock2D",
|
||||
"Downsample2D",
|
||||
"Upsample2D"
|
||||
]
|
||||
UNET_TARGET_REPLACE_NAME = [
|
||||
"conv_in",
|
||||
"conv_out",
|
||||
"time_embedding.linear_1",
|
||||
"time_embedding.linear_2",
|
||||
]
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
||||
LORA_PREFIX_UNET = 'lora_unet'
|
||||
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
||||
|
||||
def make_state_dict(
|
||||
prefix,
|
||||
root_module: torch.nn.Module,
|
||||
target_module: torch.nn.Module,
|
||||
target_replace_modules,
|
||||
target_replace_names=[]
|
||||
):
|
||||
loras = {}
|
||||
temp = {}
|
||||
temp_name = {}
|
||||
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
temp[name] = {}
|
||||
for child_name, child_module in module.named_modules():
|
||||
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
|
||||
continue
|
||||
temp[name][child_name] = child_module.weight
|
||||
elif name in target_replace_names:
|
||||
temp_name[name] = module.weight
|
||||
|
||||
for name, module in tqdm(list(target_module.named_modules())):
|
||||
if name in temp:
|
||||
weights = temp[name]
|
||||
for child_name, child_module in module.named_modules():
|
||||
lora_name = prefix + '.' + name + '.' + child_name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
layer = child_module.__class__.__name__
|
||||
if layer in {'Linear', 'Conv2d'}:
|
||||
root_weight = child_module.weight
|
||||
if torch.allclose(root_weight, weights[child_name]):
|
||||
continue
|
||||
|
||||
if layer == 'Linear':
|
||||
weight, decompose_mode = extract_linear(
|
||||
(child_module.weight - weights[child_name]),
|
||||
mode,
|
||||
linear_mode_param,
|
||||
device=extract_device,
|
||||
)
|
||||
if decompose_mode == 'low rank':
|
||||
extract_a, extract_b, diff = weight
|
||||
elif layer == 'Conv2d':
|
||||
is_linear = (child_module.weight.shape[2] == 1
|
||||
and child_module.weight.shape[3] == 1)
|
||||
weight, decompose_mode = extract_conv(
|
||||
(child_module.weight - weights[child_name]),
|
||||
mode,
|
||||
linear_mode_param if is_linear else conv_mode_param,
|
||||
device=extract_device,
|
||||
)
|
||||
if decompose_mode == 'low rank':
|
||||
extract_a, extract_b, diff = weight
|
||||
if small_conv and not is_linear and decompose_mode == 'low rank':
|
||||
dim = extract_a.size(0)
|
||||
(extract_c, extract_a, _), _ = extract_conv(
|
||||
extract_a.transpose(0, 1),
|
||||
'fixed', dim,
|
||||
extract_device, True
|
||||
)
|
||||
extract_a = extract_a.transpose(0, 1)
|
||||
extract_c = extract_c.transpose(0, 1)
|
||||
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
|
||||
diff = child_module.weight - torch.einsum(
|
||||
'i j k l, j r, p i -> p r k l',
|
||||
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
|
||||
).detach().cpu().contiguous()
|
||||
del extract_c
|
||||
else:
|
||||
continue
|
||||
if decompose_mode == 'low rank':
|
||||
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
|
||||
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
|
||||
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
|
||||
if use_bias:
|
||||
diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
|
||||
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
|
||||
|
||||
indices = sparse_diff.indices().to(torch.int16)
|
||||
values = sparse_diff.values().half()
|
||||
loras[f'{lora_name}.bias_indices'] = indices
|
||||
loras[f'{lora_name}.bias_values'] = values
|
||||
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
|
||||
del extract_a, extract_b, diff
|
||||
elif decompose_mode == 'full':
|
||||
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
elif name in temp_name:
|
||||
weights = temp_name[name]
|
||||
lora_name = prefix + '.' + name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
layer = module.__class__.__name__
|
||||
|
||||
if layer in {'Linear', 'Conv2d'}:
|
||||
root_weight = module.weight
|
||||
if torch.allclose(root_weight, weights):
|
||||
continue
|
||||
|
||||
if layer == 'Linear':
|
||||
weight, decompose_mode = extract_linear(
|
||||
(root_weight - weights),
|
||||
mode,
|
||||
linear_mode_param,
|
||||
device=extract_device,
|
||||
)
|
||||
if decompose_mode == 'low rank':
|
||||
extract_a, extract_b, diff = weight
|
||||
elif layer == 'Conv2d':
|
||||
is_linear = (
|
||||
root_weight.shape[2] == 1
|
||||
and root_weight.shape[3] == 1
|
||||
)
|
||||
weight, decompose_mode = extract_conv(
|
||||
(root_weight - weights),
|
||||
mode,
|
||||
linear_mode_param if is_linear else conv_mode_param,
|
||||
device=extract_device,
|
||||
)
|
||||
if decompose_mode == 'low rank':
|
||||
extract_a, extract_b, diff = weight
|
||||
if small_conv and not is_linear and decompose_mode == 'low rank':
|
||||
dim = extract_a.size(0)
|
||||
(extract_c, extract_a, _), _ = extract_conv(
|
||||
extract_a.transpose(0, 1),
|
||||
'fixed', dim,
|
||||
extract_device, True
|
||||
)
|
||||
extract_a = extract_a.transpose(0, 1)
|
||||
extract_c = extract_c.transpose(0, 1)
|
||||
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
|
||||
diff = root_weight - torch.einsum(
|
||||
'i j k l, j r, p i -> p r k l',
|
||||
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
|
||||
).detach().cpu().contiguous()
|
||||
del extract_c
|
||||
else:
|
||||
continue
|
||||
if decompose_mode == 'low rank':
|
||||
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
|
||||
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
|
||||
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
|
||||
if use_bias:
|
||||
diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
|
||||
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
|
||||
|
||||
indices = sparse_diff.indices().to(torch.int16)
|
||||
values = sparse_diff.values().half()
|
||||
loras[f'{lora_name}.bias_indices'] = indices
|
||||
loras[f'{lora_name}.bias_values'] = values
|
||||
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
|
||||
del extract_a, extract_b, diff
|
||||
elif decompose_mode == 'full':
|
||||
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return loras
|
||||
|
||||
text_encoder_loras = make_state_dict(
|
||||
LORA_PREFIX_TEXT_ENCODER,
|
||||
base_model[0], db_model[0],
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE
|
||||
)
|
||||
|
||||
unet_loras = make_state_dict(
|
||||
LORA_PREFIX_UNET,
|
||||
base_model[2], db_model[2],
|
||||
UNET_TARGET_REPLACE_MODULE,
|
||||
UNET_TARGET_REPLACE_NAME
|
||||
)
|
||||
print(len(text_encoder_loras), len(unet_loras))
|
||||
# the | will
|
||||
return (text_encoder_loras | unet_loras), meta
|
||||
|
||||
|
||||
def get_module(
|
||||
lyco_state_dict: Dict,
|
||||
lora_name
|
||||
):
|
||||
if f'{lora_name}.lora_up.weight' in lyco_state_dict:
|
||||
up = lyco_state_dict[f'{lora_name}.lora_up.weight']
|
||||
down = lyco_state_dict[f'{lora_name}.lora_down.weight']
|
||||
mid = lyco_state_dict.get(f'{lora_name}.lora_mid.weight', None)
|
||||
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
||||
return 'locon', (up, down, mid, alpha)
|
||||
elif f'{lora_name}.hada_w1_a' in lyco_state_dict:
|
||||
w1a = lyco_state_dict[f'{lora_name}.hada_w1_a']
|
||||
w1b = lyco_state_dict[f'{lora_name}.hada_w1_b']
|
||||
w2a = lyco_state_dict[f'{lora_name}.hada_w2_a']
|
||||
w2b = lyco_state_dict[f'{lora_name}.hada_w2_b']
|
||||
t1 = lyco_state_dict.get(f'{lora_name}.hada_t1', None)
|
||||
t2 = lyco_state_dict.get(f'{lora_name}.hada_t2', None)
|
||||
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
||||
return 'hada', (w1a, w1b, w2a, w2b, t1, t2, alpha)
|
||||
elif f'{lora_name}.weight' in lyco_state_dict:
|
||||
weight = lyco_state_dict[f'{lora_name}.weight']
|
||||
on_input = lyco_state_dict.get(f'{lora_name}.on_input', False)
|
||||
return 'ia3', (weight, on_input)
|
||||
elif (f'{lora_name}.lokr_w1' in lyco_state_dict
|
||||
or f'{lora_name}.lokr_w1_a' in lyco_state_dict):
|
||||
w1 = lyco_state_dict.get(f'{lora_name}.lokr_w1', None)
|
||||
w1a = lyco_state_dict.get(f'{lora_name}.lokr_w1_a', None)
|
||||
w1b = lyco_state_dict.get(f'{lora_name}.lokr_w1_b', None)
|
||||
w2 = lyco_state_dict.get(f'{lora_name}.lokr_w2', None)
|
||||
w2a = lyco_state_dict.get(f'{lora_name}.lokr_w2_a', None)
|
||||
w2b = lyco_state_dict.get(f'{lora_name}.lokr_w2_b', None)
|
||||
t1 = lyco_state_dict.get(f'{lora_name}.lokr_t1', None)
|
||||
t2 = lyco_state_dict.get(f'{lora_name}.lokr_t2', None)
|
||||
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
|
||||
return 'kron', (w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha)
|
||||
elif f'{lora_name}.diff' in lyco_state_dict:
|
||||
return 'full', lyco_state_dict[f'{lora_name}.diff']
|
||||
else:
|
||||
return 'None', ()
|
||||
|
||||
|
||||
def cp_weight_from_conv(
|
||||
up, down, mid
|
||||
):
|
||||
up = up.reshape(up.size(0), up.size(1))
|
||||
down = down.reshape(down.size(0), down.size(1))
|
||||
return torch.einsum('m n w h, i m, n j -> i j w h', mid, up, down)
|
||||
|
||||
|
||||
def cp_weight(
|
||||
wa, wb, t
|
||||
):
|
||||
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
|
||||
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def rebuild_weight(module_type, params, orig_weight, scale=1):
|
||||
if orig_weight is None:
|
||||
return orig_weight
|
||||
merged = orig_weight
|
||||
if module_type == 'locon':
|
||||
up, down, mid, alpha = params
|
||||
if alpha is not None:
|
||||
scale *= alpha / up.size(1)
|
||||
if mid is not None:
|
||||
rebuild = cp_weight_from_conv(up, down, mid)
|
||||
else:
|
||||
rebuild = up.reshape(up.size(0), -1) @ down.reshape(down.size(0), -1)
|
||||
merged = orig_weight + rebuild.reshape(orig_weight.shape) * scale
|
||||
del up, down, mid, alpha, params, rebuild
|
||||
elif module_type == 'hada':
|
||||
w1a, w1b, w2a, w2b, t1, t2, alpha = params
|
||||
if alpha is not None:
|
||||
scale *= alpha / w1b.size(0)
|
||||
if t1 is not None:
|
||||
rebuild1 = cp_weight(w1a, w1b, t1)
|
||||
else:
|
||||
rebuild1 = w1a @ w1b
|
||||
if t2 is not None:
|
||||
rebuild2 = cp_weight(w2a, w2b, t2)
|
||||
else:
|
||||
rebuild2 = w2a @ w2b
|
||||
rebuild = (rebuild1 * rebuild2).reshape(orig_weight.shape)
|
||||
merged = orig_weight + rebuild * scale
|
||||
del w1a, w1b, w2a, w2b, t1, t2, alpha, params, rebuild, rebuild1, rebuild2
|
||||
elif module_type == 'ia3':
|
||||
weight, on_input = params
|
||||
if not on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
merged = orig_weight + weight * orig_weight * scale
|
||||
del weight, on_input, params
|
||||
elif module_type == 'kron':
|
||||
w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha = params
|
||||
if alpha is not None and (w1b is not None or w2b is not None):
|
||||
scale *= alpha / (w1b.size(0) if w1b else w2b.size(0))
|
||||
if w1a is not None and w1b is not None:
|
||||
if t1:
|
||||
w1 = cp_weight(w1a, w1b, t1)
|
||||
else:
|
||||
w1 = w1a @ w1b
|
||||
if w2a is not None and w2b is not None:
|
||||
if t2:
|
||||
w2 = cp_weight(w2a, w2b, t2)
|
||||
else:
|
||||
w2 = w2a @ w2b
|
||||
rebuild = torch.kron(w1, w2).reshape(orig_weight.shape)
|
||||
merged = orig_weight + rebuild * scale
|
||||
del w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha, params, rebuild
|
||||
elif module_type == 'full':
|
||||
rebuild = params.reshape(orig_weight.shape)
|
||||
merged = orig_weight + rebuild * scale
|
||||
del params, rebuild
|
||||
|
||||
return merged
|
||||
|
||||
|
||||
def merge(
|
||||
base_model,
|
||||
lyco_state_dict,
|
||||
scale: float = 1.0,
|
||||
device='cpu'
|
||||
):
|
||||
UNET_TARGET_REPLACE_MODULE = [
|
||||
"Transformer2DModel",
|
||||
"Attention",
|
||||
"ResnetBlock2D",
|
||||
"Downsample2D",
|
||||
"Upsample2D"
|
||||
]
|
||||
UNET_TARGET_REPLACE_NAME = [
|
||||
"conv_in",
|
||||
"conv_out",
|
||||
"time_embedding.linear_1",
|
||||
"time_embedding.linear_2",
|
||||
]
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
||||
LORA_PREFIX_UNET = 'lora_unet'
|
||||
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
|
||||
merged = 0
|
||||
|
||||
def merge_state_dict(
|
||||
prefix,
|
||||
root_module: torch.nn.Module,
|
||||
lyco_state_dict: Dict[str, torch.Tensor],
|
||||
target_replace_modules,
|
||||
target_replace_names=[]
|
||||
):
|
||||
nonlocal merged
|
||||
for name, module in tqdm(list(root_module.named_modules()), desc=f'Merging {prefix}'):
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
for child_name, child_module in module.named_modules():
|
||||
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
|
||||
continue
|
||||
lora_name = prefix + '.' + name + '.' + child_name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
|
||||
result = rebuild_weight(*get_module(
|
||||
lyco_state_dict, lora_name
|
||||
), getattr(child_module, 'weight'), scale)
|
||||
if result is not None:
|
||||
merged += 1
|
||||
child_module.requires_grad_(False)
|
||||
child_module.weight.copy_(result)
|
||||
elif name in target_replace_names:
|
||||
lora_name = prefix + '.' + name
|
||||
lora_name = lora_name.replace('.', '_')
|
||||
|
||||
result = rebuild_weight(*get_module(
|
||||
lyco_state_dict, lora_name
|
||||
), getattr(module, 'weight'), scale)
|
||||
if result is not None:
|
||||
merged += 1
|
||||
module.requires_grad_(False)
|
||||
module.weight.copy_(result)
|
||||
|
||||
if device == 'cpu':
|
||||
for k, v in tqdm(list(lyco_state_dict.items()), desc='Converting Dtype'):
|
||||
lyco_state_dict[k] = v.float()
|
||||
|
||||
merge_state_dict(
|
||||
LORA_PREFIX_TEXT_ENCODER,
|
||||
base_model[0],
|
||||
lyco_state_dict,
|
||||
TEXT_ENCODER_TARGET_REPLACE_MODULE,
|
||||
UNET_TARGET_REPLACE_NAME
|
||||
)
|
||||
merge_state_dict(
|
||||
LORA_PREFIX_UNET,
|
||||
base_model[2],
|
||||
lyco_state_dict,
|
||||
UNET_TARGET_REPLACE_MODULE,
|
||||
UNET_TARGET_REPLACE_NAME
|
||||
)
|
||||
print(f'{merged} Modules been merged')
|
||||
24
toolkit/metadata.py
Normal file
24
toolkit/metadata.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import json
|
||||
|
||||
software_meta = {
|
||||
"name": "ai-toolkit",
|
||||
"url": "https://github.com/ostris/ai-toolkit"
|
||||
}
|
||||
|
||||
|
||||
def create_meta(dict_list, name=None):
|
||||
meta = {}
|
||||
for d in dict_list:
|
||||
for key, value in d.items():
|
||||
meta[key] = value
|
||||
|
||||
if "name" not in meta:
|
||||
meta["name"] = "[name]"
|
||||
|
||||
meta["software"] = software_meta
|
||||
|
||||
# convert to string to handle replacements
|
||||
meta_string = json.dumps(meta)
|
||||
if name is not None:
|
||||
meta_string = meta_string.replace("[name]", name)
|
||||
return json.loads(meta_string)
|
||||
4
toolkit/paths.py
Normal file
4
toolkit/paths.py
Normal file
@@ -0,0 +1,4 @@
|
||||
import os
|
||||
|
||||
TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config')
|
||||
Reference in New Issue
Block a user