mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Adjusted flow matching so target noise multiplier works properly with it.
This commit is contained in:
@@ -31,7 +31,7 @@ from jobs.process import BaseSDTrainProcess
|
||||
from torchvision import transforms
|
||||
from diffusers import EMAModel
|
||||
import math
|
||||
|
||||
from toolkit.train_tools import precondition_model_outputs_flow_match
|
||||
|
||||
|
||||
def flush():
|
||||
@@ -328,14 +328,24 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
# v-parameterization training
|
||||
target = self.sd.noise_scheduler.get_velocity(batch.tensor, noise, timesteps)
|
||||
|
||||
elif self.sd.is_rectified_flow:
|
||||
elif self.sd.is_flow_matching:
|
||||
# only if preconditioning model outputs
|
||||
# if not preconditioning, (target = noise - batch.latents)
|
||||
|
||||
|
||||
# target = noise - batch.latents
|
||||
|
||||
# if preconditioning outputs, target latents
|
||||
# model_pred = model_pred * (-sigmas) + noisy_model_input
|
||||
if self.train_config.target_noise_multiplier != 1.0:
|
||||
# we are adjusting the target noise, need to recompute the noisy latents with
|
||||
# the noise adjusted above
|
||||
with torch.no_grad():
|
||||
noisy_latents = self.sd.add_noise(batch.latents, noise, timesteps).detach()
|
||||
|
||||
noise_pred = precondition_model_outputs_flow_match(
|
||||
noise_pred,
|
||||
noisy_latents,
|
||||
timesteps,
|
||||
self.sd.noise_scheduler
|
||||
)
|
||||
target = batch.latents.detach()
|
||||
else:
|
||||
target = noise
|
||||
@@ -383,7 +393,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
loss = loss_per_element
|
||||
else:
|
||||
# handle flow matching ref https://github.com/huggingface/diffusers/blob/ec068f9b5bf7c65f93125ec889e0ff1792a00da1/examples/dreambooth/train_dreambooth_lora_sd3.py#L1485C17-L1495C100
|
||||
if self.sd.is_rectified_flow and prior_pred is None:
|
||||
if self.sd.is_flow_matching and prior_pred is None:
|
||||
# outputs should be preprocessed latents
|
||||
sigmas = self.sd.noise_scheduler.get_sigmas(timesteps, pred.ndim, dtype, self.device_torch)
|
||||
weighting = torch.ones_like(sigmas)
|
||||
|
||||
Reference in New Issue
Block a user