diff --git a/.vscode/launch.json b/.vscode/launch.json index 02d5cacf..abbc2f3d 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -40,5 +40,17 @@ "console": "integratedTerminal", "justMyCode": false }, + { + "name": "Python: Debug Current File (cuda:1)", + "type": "python", + "request": "launch", + "program": "${file}", + "console": "integratedTerminal", + "env": { + "CUDA_LAUNCH_BLOCKING": "1", + "CUDA_VISIBLE_DEVICES": "1" + }, + "justMyCode": false + }, ] } \ No newline at end of file diff --git a/extensions_built_in/sd_trainer/SDTrainer.py b/extensions_built_in/sd_trainer/SDTrainer.py index 27e57025..5d0105f2 100644 --- a/extensions_built_in/sd_trainer/SDTrainer.py +++ b/extensions_built_in/sd_trainer/SDTrainer.py @@ -438,7 +438,7 @@ class SDTrainer(BaseSDTrainProcess): dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean") additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0 - elif self.dfe.version == 3: + elif self.dfe.version == 3 or self.dfe.version == 4: dfe_loss = self.dfe( noise=noise, noise_pred=noise_pred, @@ -518,7 +518,10 @@ class SDTrainer(BaseSDTrainProcess): v2=self.train_config.linear_timesteps2, timestep_type=self.train_config.timestep_type ).to(loss.device, dtype=loss.dtype) - timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach() + if len(loss.shape) == 4: + timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach() + elif len(loss.shape) == 5: + timestep_weight = timestep_weight.view(-1, 1, 1, 1, 1).detach() loss = loss * timestep_weight if self.train_config.do_prior_divergence and prior_pred is not None: diff --git a/jobs/process/BaseSDTrainProcess.py b/jobs/process/BaseSDTrainProcess.py index b4f768d9..064e89fc 100644 --- a/jobs/process/BaseSDTrainProcess.py +++ b/jobs/process/BaseSDTrainProcess.py @@ -1116,6 +1116,7 @@ class BaseSDTrainProcess(BaseTrainProcess): self.train_config.linear_timesteps, self.train_config.linear_timesteps2, self.train_config.timestep_type == 'linear', + self.train_config.timestep_type == 'one_step', ]) timestep_type = 'linear' if linear_timesteps else None @@ -1159,6 +1160,8 @@ class BaseSDTrainProcess(BaseTrainProcess): device=self.device_torch ) timestep_indices = timestep_indices.long() + elif self.train_config.timestep_type == 'one_step': + timestep_indices = torch.zeros((batch_size,), device=self.device_torch, dtype=torch.long) elif content_or_style in ['style', 'content']: # this is from diffusers training code # Cubic sampling for favoring later or earlier timesteps diff --git a/requirements.txt b/requirements.txt index 5bed325e..c893cdaf 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,7 +4,7 @@ torchao==0.9.0 safetensors git+https://github.com/jaretburkett/easy_dwpose.git git+https://github.com/huggingface/diffusers@363d1ab7e24c5ed6c190abb00df66d9edb74383b -transformers==4.49.0 +transformers==4.52.4 lycoris-lora==1.8.3 flatten_json pyyaml diff --git a/toolkit/config_modules.py b/toolkit/config_modules.py index 0202eb8e..0e8b8af0 100644 --- a/toolkit/config_modules.py +++ b/toolkit/config_modules.py @@ -437,7 +437,7 @@ class TrainConfig: # adds an additional loss to the network to encourage it output a normalized standard deviation self.target_norm_std = kwargs.get('target_norm_std', None) self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0) - self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample, weighted + self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample, weighted, one_step self.next_sample_timesteps = kwargs.get('next_sample_timesteps', 8) self.linear_timesteps = kwargs.get('linear_timesteps', False) self.linear_timesteps2 = kwargs.get('linear_timesteps2', False) diff --git a/toolkit/models/diffusion_feature_extraction.py b/toolkit/models/diffusion_feature_extraction.py index 17b259e6..e911484a 100644 --- a/toolkit/models/diffusion_feature_extraction.py +++ b/toolkit/models/diffusion_feature_extraction.py @@ -1,3 +1,4 @@ +import math import torch import os from torch import nn @@ -351,12 +352,251 @@ class DiffusionFeatureExtractor3(nn.Module): return total_loss +class DiffusionFeatureExtractor4(nn.Module): + def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16, vae=None): + super().__init__() + self.version = 4 + if vae is None: + raise ValueError("vae must be provided for DFE4") + self.vae = vae + # image_encoder_path = "google/siglip-so400m-patch14-384" + image_encoder_path = "google/siglip2-so400m-patch16-naflex" + from transformers import Siglip2ImageProcessor, Siglip2VisionModel + try: + self.image_processor = Siglip2ImageProcessor.from_pretrained( + image_encoder_path) + except EnvironmentError: + self.image_processor = Siglip2ImageProcessor() + + self.image_processor.max_num_patches = 1024 + + self.vision_encoder = Siglip2VisionModel.from_pretrained( + image_encoder_path, + ignore_mismatched_sizes=True + ).to(device, dtype=dtype) + + self.losses = {} + self.log_every = 100 + self.step = 0 + + def _target_hw(self, h, w, patch, max_patches, eps: float = 1e-5): + def _snap(x, s): + x = math.ceil((x * s) / patch) * patch + return max(patch, int(x)) + + lo, hi = eps / 10, 1.0 + while hi - lo >= eps: + mid = (lo + hi) / 2 + th, tw = _snap(h, mid), _snap(w, mid) + if (th // patch) * (tw // patch) <= max_patches: + lo = mid + else: + hi = mid + return _snap(h, lo), _snap(w, lo) + + + def tensors_to_siglip_like_features(self, batch: torch.Tensor): + """ + Args: + batch: (bs, 3, H, W) tensor already in the desired value range + (e.g. [-1, 1] or [0, 1]); no extra rescale / normalize here. + + Returns: + dict( + pixel_values – (bs, L, P) where L = n_h*n_w, P = 3*patch*patch + pixel_attention_mask– (L,) all-ones + spatial_shapes – (n_h, n_w) + ) + """ + if batch.ndim != 4: + raise ValueError("Expected (bs, 3, H, W) tensor") + + bs, c, H, W = batch.shape + proc = self.image_processor + patch = proc.patch_size + max_patches = proc.max_num_patches + + # One shared resize for the whole batch + tgt_h, tgt_w = self._target_hw(H, W, patch, max_patches) + batch = torch.nn.functional.interpolate( + batch, size=(tgt_h, tgt_w), mode="bilinear", align_corners=False + ) + + n_h, n_w = tgt_h // patch, tgt_w // patch + # flat_dim = c * patch * patch + num_p = n_h * n_w + + # unfold → (bs, flat_dim, num_p) → (bs, num_p, flat_dim) + patches = ( + torch.nn.functional.unfold(batch, kernel_size=patch, stride=patch) + .transpose(1, 2) + ) + + attn_mask = torch.ones(num_p, dtype=torch.long, device=batch.device) + spatial = torch.tensor((n_h, n_w), device=batch.device, dtype=torch.int32) + + # repeat attn_mask for each batch element + attn_mask = attn_mask.unsqueeze(0).repeat(bs, 1) + spatial = spatial.unsqueeze(0).repeat(bs, 1) + + return { + "pixel_values": patches, # (bs, num_patches, patch_dim) + "pixel_attention_mask": attn_mask, # (num_patches,) + "spatial_shapes": spatial + } + + def get_siglip_features(self, tensors_0_1): + dtype = torch.bfloat16 + device = self.vae.device + + tensors_0_1 = torch.clamp(tensors_0_1, 0.0, 1.0) + + mean = torch.tensor(self.image_processor.image_mean).to( + device, dtype=dtype + ).detach() + std = torch.tensor(self.image_processor.image_std).to( + device, dtype=dtype + ).detach() + # tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 + clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) + + encoder_kwargs = self.tensors_to_siglip_like_features(clip_image) + id_embeds = self.vision_encoder( + pixel_values=encoder_kwargs['pixel_values'], + pixel_attention_mask=encoder_kwargs['pixel_attention_mask'], + spatial_shapes=encoder_kwargs['spatial_shapes'], + output_hidden_states=True, + ) + + # embeds = id_embeds['hidden_states'][-2] # penultimate layer + embeds = id_embeds['pooler_output'] + return embeds + + def forward( + self, + noise, + noise_pred, + noisy_latents, + timesteps, + batch: DataLoaderBatchDTO, + scheduler: CustomFlowMatchEulerDiscreteScheduler, + clip_weight=1.0, + mse_weight=0.0, + model=None + ): + dtype = torch.bfloat16 + device = self.vae.device + tensors = batch.tensor.to(device, dtype=dtype) + is_video = False + # stack time for video models on the batch dimension + if len(noise_pred.shape) == 5: + # B, C, T, H, W = images.shape + # only take first time + noise = noise[:, :, 0, :, :] + noise_pred = noise_pred[:, :, 0, :, :] + noisy_latents = noisy_latents[:, :, 0, :, :] + is_video = True + + if len(tensors.shape) == 5: + # batch is different + # (B, T, C, H, W) + # only take first time + tensors = tensors[:, 0, :, :, :] + + if model is not None and hasattr(model, 'get_stepped_pred'): + stepped_latents = model.get_stepped_pred(noise_pred, noise) + else: + # stepped_latents = noise - noise_pred + # first we step the scheduler from current timestep to the very end for a full denoise + bs = noise_pred.shape[0] + noise_pred_chunks = torch.chunk(noise_pred, bs) + timestep_chunks = torch.chunk(timesteps, bs) + noisy_latent_chunks = torch.chunk(noisy_latents, bs) + stepped_chunks = [] + for idx in range(bs): + model_output = noise_pred_chunks[idx] + timestep = timestep_chunks[idx] + scheduler._step_index = None + scheduler._init_step_index(timestep) + sample = noisy_latent_chunks[idx].to(torch.float32) + + sigma = scheduler.sigmas[scheduler.step_index] + sigma_next = scheduler.sigmas[-1] # use last sigma for final step + prev_sample = sample + (sigma_next - sigma) * model_output + stepped_chunks.append(prev_sample) + + stepped_latents = torch.cat(stepped_chunks, dim=0) + + latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype) + + scaling_factor = self.vae.config['scaling_factor'] if 'scaling_factor' in self.vae.config else 1.0 + shift_factor = self.vae.config['shift_factor'] if 'shift_factor' in self.vae.config else 0.0 + latents = (latents / scaling_factor) + shift_factor + if is_video: + # if video, we need to unsqueeze the latents to match the vae input shape + latents = latents.unsqueeze(2) + tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1 + + if is_video: + # if video, we need to squeeze the tensors to match the output shape + tensors_n1p1 = tensors_n1p1.squeeze(2) + + pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1 + + total_loss = 0 + + with torch.no_grad(): + target_img = tensors.to(device, dtype=dtype) + # go from -1 to 1 to 0 to 1 + target_img = (target_img + 1) / 2 + if clip_weight > 0: + target_clip_output = self.get_siglip_features(target_img).detach() + if clip_weight > 0: + pred_clip_output = self.get_siglip_features(pred_images) + clip_loss = torch.nn.functional.mse_loss( + pred_clip_output.float(), target_clip_output.float() + ) * clip_weight + + if 'clip_loss' not in self.losses: + self.losses['clip_loss'] = clip_loss.item() + else: + self.losses['clip_loss'] += clip_loss.item() + + total_loss += clip_loss + if mse_weight > 0: + mse_loss = torch.nn.functional.mse_loss( + pred_images.float(), target_img.float() + ) * mse_weight + + if 'mse_loss' not in self.losses: + self.losses['mse_loss'] = mse_loss.item() + else: + self.losses['mse_loss'] += mse_loss.item() + + total_loss += mse_loss + + if self.step % self.log_every == 0 and self.step > 0: + print(f"DFE losses:") + for key in self.losses: + self.losses[key] /= self.log_every + # print in 2.000e-01 format + print(f" - {key}: {self.losses[key]:.3e}") + self.losses[key] = 0.0 + + # total_loss += mse_loss + self.step += 1 + + return total_loss def load_dfe(model_path, vae=None) -> DiffusionFeatureExtractor: if model_path == "v3": dfe = DiffusionFeatureExtractor3(vae=vae) dfe.eval() return dfe + if model_path == "v4": + dfe = DiffusionFeatureExtractor4(vae=vae) + dfe.eval() + return dfe if not os.path.exists(model_path): raise FileNotFoundError(f"Model file not found: {model_path}") # if it ende with safetensors diff --git a/toolkit/models/wan21/autoencoder_kl_wan.py b/toolkit/models/wan21/autoencoder_kl_wan.py new file mode 100644 index 00000000..4f5b6ebd --- /dev/null +++ b/toolkit/models/wan21/autoencoder_kl_wan.py @@ -0,0 +1,865 @@ +# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import logging +from diffusers.utils.accelerate_utils import apply_forward_hook +from diffusers.models.activations import get_activation +from diffusers.models.modeling_outputs import AutoencoderKLOutput +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution +import copy + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +CACHE_T = 2 + + +class WanCausalConv3d(nn.Conv3d): + r""" + A custom 3D causal convolution layer with feature caching support. + + This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature + caching for efficient inference. + + Args: + in_channels (int): Number of channels in the input image + out_channels (int): Number of channels produced by the convolution + kernel_size (int or tuple): Size of the convolving kernel + stride (int or tuple, optional): Stride of the convolution. Default: 1 + padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0 + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int, int]], + stride: Union[int, Tuple[int, int, int]] = 1, + padding: Union[int, Tuple[int, int, int]] = 0, + ) -> None: + super().__init__( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + + # Set up causal padding + self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0) + self.padding = (0, 0, 0) + + def forward(self, x, cache_x=None): + padding = list(self._padding) + if cache_x is not None and self._padding[4] > 0: + cache_x = cache_x.to(x.device) + x = torch.cat([cache_x, x], dim=2) + padding[4] -= cache_x.shape[2] + x = F.pad(x, padding) + return super().forward(x) + + +class WanRMS_norm(nn.Module): + r""" + A custom RMS normalization layer. + + Args: + dim (int): The number of dimensions to normalize over. + channel_first (bool, optional): Whether the input tensor has channels as the first dimension. + Default is True. + images (bool, optional): Whether the input represents image data. Default is True. + bias (bool, optional): Whether to include a learnable bias term. Default is False. + """ + + def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None: + super().__init__() + broadcastable_dims = (1, 1, 1) if not images else (1, 1) + shape = (dim, *broadcastable_dims) if channel_first else (dim,) + + self.channel_first = channel_first + self.scale = dim**0.5 + self.gamma = nn.Parameter(torch.ones(shape)) + self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 + + def forward(self, x): + return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias + + +class WanUpsample(nn.Upsample): + r""" + Perform upsampling while ensuring the output tensor has the same data type as the input. + + Args: + x (torch.Tensor): Input tensor to be upsampled. + + Returns: + torch.Tensor: Upsampled tensor with the same data type as the input. + """ + + def forward(self, x): + return super().forward(x.float()).type_as(x) + + +class WanResample(nn.Module): + r""" + A custom resampling module for 2D and 3D data. + + Args: + dim (int): The number of input/output channels. + mode (str): The resampling mode. Must be one of: + - 'none': No resampling (identity operation). + - 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution. + - 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution. + - 'downsample2d': 2D downsampling with zero-padding and convolution. + - 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution. + """ + + def __init__(self, dim: int, mode: str) -> None: + super().__init__() + self.dim = dim + self.mode = mode + + # layers + if mode == "upsample2d": + self.resample = nn.Sequential( + WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) + ) + elif mode == "upsample3d": + self.resample = nn.Sequential( + WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) + ) + self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) + + elif mode == "downsample2d": + self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) + elif mode == "downsample3d": + self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) + self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) + + else: + self.resample = nn.Identity() + + def forward(self, x, feat_cache=None, feat_idx=[0]): + b, c, t, h, w = x.size() + if self.mode == "upsample3d": + if feat_cache is not None: + idx = feat_idx[0] + if feat_cache[idx] is None: + feat_cache[idx] = "Rep" + feat_idx[0] += 1 + else: + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep": + # cache last frame of last two chunk + cache_x = torch.cat( + [feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2 + ) + if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep": + cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2) + if feat_cache[idx] == "Rep": + x = self.time_conv(x) + else: + x = self.time_conv(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + + x = x.reshape(b, 2, c, t, h, w) + x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) + x = x.reshape(b, c, t * 2, h, w) + t = x.shape[2] + x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) + x = self.resample(x) + x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4) + + if self.mode == "downsample3d": + if feat_cache is not None: + idx = feat_idx[0] + if feat_cache[idx] is None: + feat_cache[idx] = x.clone() + feat_idx[0] += 1 + else: + cache_x = x[:, :, -1:, :, :].clone() + x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + return x + + +class WanResidualBlock(nn.Module): + r""" + A custom residual block module. + + Args: + in_dim (int): Number of input channels. + out_dim (int): Number of output channels. + dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0. + non_linearity (str, optional): Type of non-linearity to use. Default is "silu". + """ + + def __init__( + self, + in_dim: int, + out_dim: int, + dropout: float = 0.0, + non_linearity: str = "silu", + ) -> None: + super().__init__() + self.in_dim = in_dim + self.out_dim = out_dim + self.nonlinearity = get_activation(non_linearity) + + # layers + self.norm1 = WanRMS_norm(in_dim, images=False) + self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1) + self.norm2 = WanRMS_norm(out_dim, images=False) + self.dropout = nn.Dropout(dropout) + self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1) + self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity() + + def forward(self, x, feat_cache=None, feat_idx=[0]): + # Apply shortcut connection + h = self.conv_shortcut(x) + + # First normalization and activation + x = self.norm1(x) + x = self.nonlinearity(x) + + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + + x = self.conv1(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv1(x) + + # Second normalization and activation + x = self.norm2(x) + x = self.nonlinearity(x) + + # Dropout + x = self.dropout(x) + + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + + x = self.conv2(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv2(x) + + # Add residual connection + return x + h + + +class WanAttentionBlock(nn.Module): + r""" + Causal self-attention with a single head. + + Args: + dim (int): The number of channels in the input tensor. + """ + + def __init__(self, dim): + super().__init__() + self.dim = dim + + # layers + self.norm = WanRMS_norm(dim) + self.to_qkv = nn.Conv2d(dim, dim * 3, 1) + self.proj = nn.Conv2d(dim, dim, 1) + + def forward(self, x): + identity = x + batch_size, channels, time, height, width = x.size() + + x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width) + x = self.norm(x) + + # compute query, key, value + qkv = self.to_qkv(x) + qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1) + qkv = qkv.permute(0, 1, 3, 2).contiguous() + q, k, v = qkv.chunk(3, dim=-1) + + # apply attention + x = F.scaled_dot_product_attention(q, k, v) + + x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width) + + # output projection + x = self.proj(x) + + # Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w] + x = x.view(batch_size, time, channels, height, width) + x = x.permute(0, 2, 1, 3, 4) + + return x + identity + + +class WanMidBlock(nn.Module): + """ + Middle block for WanVAE encoder and decoder. + + Args: + dim (int): Number of input/output channels. + dropout (float): Dropout rate. + non_linearity (str): Type of non-linearity to use. + """ + + def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1): + super().__init__() + self.dim = dim + + # Create the components + resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)] + attentions = [] + for _ in range(num_layers): + attentions.append(WanAttentionBlock(dim)) + resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward(self, x, feat_cache=None, feat_idx=[0]): + # First residual block + x = self.resnets[0](x, feat_cache, feat_idx) + + # Process through attention and residual blocks + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if attn is not None: + x = attn(x) + + x = resnet(x, feat_cache, feat_idx) + + return x + + +class WanEncoder3d(nn.Module): + r""" + A 3D encoder module. + + Args: + dim (int): The base number of channels in the first layer. + z_dim (int): The dimensionality of the latent space. + dim_mult (list of int): Multipliers for the number of channels in each block. + num_res_blocks (int): Number of residual blocks in each block. + attn_scales (list of float): Scales at which to apply attention mechanisms. + temperal_downsample (list of bool): Whether to downsample temporally in each block. + dropout (float): Dropout rate for the dropout layers. + non_linearity (str): Type of non-linearity to use. + """ + + def __init__( + self, + dim=128, + z_dim=4, + dim_mult=[1, 2, 4, 4], + num_res_blocks=2, + attn_scales=[], + temperal_downsample=[True, True, False], + dropout=0.0, + non_linearity: str = "silu", + ): + super().__init__() + self.dim = dim + self.z_dim = z_dim + self.dim_mult = dim_mult + self.num_res_blocks = num_res_blocks + self.attn_scales = attn_scales + self.temperal_downsample = temperal_downsample + self.nonlinearity = get_activation(non_linearity) + + # dimensions + dims = [dim * u for u in [1] + dim_mult] + scale = 1.0 + + # init block + self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1) + + # downsample blocks + self.down_blocks = nn.ModuleList([]) + for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): + # residual (+attention) blocks + for _ in range(num_res_blocks): + self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout)) + if scale in attn_scales: + self.down_blocks.append(WanAttentionBlock(out_dim)) + in_dim = out_dim + + # downsample block + if i != len(dim_mult) - 1: + mode = "downsample3d" if temperal_downsample[i] else "downsample2d" + self.down_blocks.append(WanResample(out_dim, mode=mode)) + scale /= 2.0 + + # middle blocks + self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1) + + # output blocks + self.norm_out = WanRMS_norm(out_dim, images=False) + self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1) + + self.gradient_checkpointing = False + + def forward(self, x, feat_cache=None, feat_idx=[0]): + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + # cache last frame of last two chunk + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + x = self.conv_in(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv_in(x) + + ## downsamples + for layer in self.down_blocks: + if feat_cache is not None: + x = layer(x, feat_cache, feat_idx) + else: + x = layer(x) + + ## middle + x = self.mid_block(x, feat_cache, feat_idx) + + ## head + x = self.norm_out(x) + x = self.nonlinearity(x) + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + # cache last frame of last two chunk + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + x = self.conv_out(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv_out(x) + return x + + +class WanUpBlock(nn.Module): + """ + A block that handles upsampling for the WanVAE decoder. + + Args: + in_dim (int): Input dimension + out_dim (int): Output dimension + num_res_blocks (int): Number of residual blocks + dropout (float): Dropout rate + upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d') + non_linearity (str): Type of non-linearity to use + """ + + def __init__( + self, + in_dim: int, + out_dim: int, + num_res_blocks: int, + dropout: float = 0.0, + upsample_mode: Optional[str] = None, + non_linearity: str = "silu", + ): + super().__init__() + self.in_dim = in_dim + self.out_dim = out_dim + + # Create layers list + resnets = [] + # Add residual blocks and attention if needed + current_dim = in_dim + for _ in range(num_res_blocks + 1): + resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity)) + current_dim = out_dim + + self.resnets = nn.ModuleList(resnets) + + # Add upsampling layer if needed + self.upsamplers = None + if upsample_mode is not None: + self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)]) + + self.gradient_checkpointing = False + + def forward(self, x, feat_cache=None, feat_idx=[0]): + """ + Forward pass through the upsampling block. + + Args: + x (torch.Tensor): Input tensor + feat_cache (list, optional): Feature cache for causal convolutions + feat_idx (list, optional): Feature index for cache management + + Returns: + torch.Tensor: Output tensor + """ + for resnet in self.resnets: + if feat_cache is not None: + x = resnet(x, feat_cache, feat_idx) + else: + x = resnet(x) + + if self.upsamplers is not None: + if feat_cache is not None: + x = self.upsamplers[0](x, feat_cache, feat_idx) + else: + x = self.upsamplers[0](x) + return x + + +class WanDecoder3d(nn.Module): + r""" + A 3D decoder module. + + Args: + dim (int): The base number of channels in the first layer. + z_dim (int): The dimensionality of the latent space. + dim_mult (list of int): Multipliers for the number of channels in each block. + num_res_blocks (int): Number of residual blocks in each block. + attn_scales (list of float): Scales at which to apply attention mechanisms. + temperal_upsample (list of bool): Whether to upsample temporally in each block. + dropout (float): Dropout rate for the dropout layers. + non_linearity (str): Type of non-linearity to use. + """ + + def __init__( + self, + dim=128, + z_dim=4, + dim_mult=[1, 2, 4, 4], + num_res_blocks=2, + attn_scales=[], + temperal_upsample=[False, True, True], + dropout=0.0, + non_linearity: str = "silu", + ): + super().__init__() + self.dim = dim + self.z_dim = z_dim + self.dim_mult = dim_mult + self.num_res_blocks = num_res_blocks + self.attn_scales = attn_scales + self.temperal_upsample = temperal_upsample + + self.nonlinearity = get_activation(non_linearity) + + # dimensions + dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] + scale = 1.0 / 2 ** (len(dim_mult) - 2) + + # init block + self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1) + + # middle blocks + self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1) + + # upsample blocks + self.up_blocks = nn.ModuleList([]) + for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): + # residual (+attention) blocks + if i > 0: + in_dim = in_dim // 2 + + # Determine if we need upsampling + upsample_mode = None + if i != len(dim_mult) - 1: + upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d" + + # Create and add the upsampling block + up_block = WanUpBlock( + in_dim=in_dim, + out_dim=out_dim, + num_res_blocks=num_res_blocks, + dropout=dropout, + upsample_mode=upsample_mode, + non_linearity=non_linearity, + ) + self.up_blocks.append(up_block) + + # Update scale for next iteration + if upsample_mode is not None: + scale *= 2.0 + + # output blocks + self.norm_out = WanRMS_norm(out_dim, images=False) + self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1) + + self.gradient_checkpointing = False + + def forward(self, x, feat_cache=None, feat_idx=[0]): + ## conv1 + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + # cache last frame of last two chunk + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + x = self.conv_in(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv_in(x) + + ## middle + if torch.is_grad_enabled() and self.gradient_checkpointing: + # middle + x = self._gradient_checkpointing_func(self.mid_block, x, feat_cache, feat_idx) + + ## upsamples + for up_block in self.up_blocks: + x = self._gradient_checkpointing_func(up_block, x, feat_cache, feat_idx) + + else: + x = self.mid_block(x, feat_cache, feat_idx) + + ## upsamples + for up_block in self.up_blocks: + x = up_block(x, feat_cache, feat_idx) + + ## head + x = self.norm_out(x) + x = self.nonlinearity(x) + if feat_cache is not None: + idx = feat_idx[0] + cache_x = x[:, :, -CACHE_T:, :, :].clone() + if cache_x.shape[2] < 2 and feat_cache[idx] is not None: + # cache last frame of last two chunk + cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) + x = self.conv_out(x, feat_cache[idx]) + feat_cache[idx] = cache_x + feat_idx[0] += 1 + else: + x = self.conv_out(x) + return x + + +class AutoencoderKLWan(ModelMixin, ConfigMixin): + r""" + A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. + Introduced in [Wan 2.1]. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented + for all models (such as downloading or saving). + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + base_dim: int = 96, + z_dim: int = 16, + dim_mult: Tuple[int] = [1, 2, 4, 4], + num_res_blocks: int = 2, + attn_scales: List[float] = [], + temperal_downsample: List[bool] = [False, True, True], + dropout: float = 0.0, + latents_mean: List[float] = [ + -0.7571, + -0.7089, + -0.9113, + 0.1075, + -0.1745, + 0.9653, + -0.1517, + 1.5508, + 0.4134, + -0.0715, + 0.5517, + -0.3632, + -0.1922, + -0.9497, + 0.2503, + -0.2921, + ], + latents_std: List[float] = [ + 2.8184, + 1.4541, + 2.3275, + 2.6558, + 1.2196, + 1.7708, + 2.6052, + 2.0743, + 3.2687, + 2.1526, + 2.8652, + 1.5579, + 1.6382, + 1.1253, + 2.8251, + 1.9160, + ], + ) -> None: + super().__init__() + + self.z_dim = z_dim + self.temperal_downsample = temperal_downsample + self.temperal_upsample = temperal_downsample[::-1] + + self.encoder = WanEncoder3d( + base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout + ) + self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1) + self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1) + + self.decoder = WanDecoder3d( + base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout + ) + + def clear_cache(self): + def _count_conv3d(model): + count = 0 + for m in model.modules(): + if isinstance(m, WanCausalConv3d): + count += 1 + return count + + self._conv_num = _count_conv3d(self.decoder) + self._conv_idx = [0] + self._feat_map = [None] * self._conv_num + # cache encode + self._enc_conv_num = _count_conv3d(self.encoder) + self._enc_conv_idx = [0] + self._enc_feat_map = [None] * self._enc_conv_num + + def _encode(self, x: torch.Tensor) -> torch.Tensor: + self.clear_cache() + ## cache + t = x.shape[2] + iter_ = 1 + (t - 1) // 4 + for i in range(iter_): + self._enc_conv_idx = [0] + if i == 0: + out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) + else: + out_ = self.encoder( + x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :], + feat_cache=self._enc_feat_map, + feat_idx=self._enc_conv_idx, + ) + out = torch.cat([out, out_], 2) + + enc = self.quant_conv(out) + mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :] + enc = torch.cat([mu, logvar], dim=1) + self.clear_cache() + return enc + + @apply_forward_hook + def encode( + self, x: torch.Tensor, return_dict: bool = True + ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + r""" + Encode a batch of images into latents. + + Args: + x (`torch.Tensor`): Input batch of images. + return_dict (`bool`, *optional*, defaults to `True`): + Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. + + Returns: + The latent representations of the encoded videos. If `return_dict` is True, a + [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. + """ + h = self._encode(x) + posterior = DiagonalGaussianDistribution(h) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: + self.clear_cache() + + iter_ = z.shape[2] + x = self.post_quant_conv(z) + for i in range(iter_): + + self._conv_idx = [0] + if i == 0: + out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) + else: + out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) + out = torch.cat([out, out_], 2) + + out = torch.clamp(out, min=-1.0, max=1.0) + self.clear_cache() + if not return_dict: + return (out,) + + return DecoderOutput(sample=out) + + @apply_forward_hook + def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: + r""" + Decode a batch of images. + + Args: + z (`torch.Tensor`): Input batch of latent vectors. + return_dict (`bool`, *optional*, defaults to `True`): + Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. + + Returns: + [`~models.vae.DecoderOutput`] or `tuple`: + If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is + returned. + """ + decoded = self._decode(z).sample + if not return_dict: + return (decoded,) + + return DecoderOutput(sample=decoded) + + def forward( + self, + sample: torch.Tensor, + sample_posterior: bool = False, + return_dict: bool = True, + generator: Optional[torch.Generator] = None, + ) -> Union[DecoderOutput, torch.Tensor]: + """ + Args: + sample (`torch.Tensor`): Input sample. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`DecoderOutput`] instead of a plain tuple. + """ + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, return_dict=return_dict) + return dec diff --git a/toolkit/models/wan21/wan21.py b/toolkit/models/wan21/wan21.py index 57b556ed..9f029c7b 100644 --- a/toolkit/models/wan21/wan21.py +++ b/toolkit/models/wan21/wan21.py @@ -9,7 +9,8 @@ from toolkit.dequantize import patch_dequantization_on_save from toolkit.models.base_model import BaseModel from toolkit.prompt_utils import PromptEmbeds from transformers import AutoTokenizer, UMT5EncoderModel -from diffusers import AutoencoderKLWan, WanPipeline, WanTransformer3DModel +from diffusers import WanPipeline, WanTransformer3DModel, AutoencoderKL +from .autoencoder_kl_wan import AutoencoderKLWan import os import sys