import time import numpy as np import torch from torch.utils.data import DataLoader from torchvision import transforms import sys import os import cv2 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from toolkit.paths import SD_SCRIPTS_ROOT from toolkit.image_utils import show_img sys.path.append(SD_SCRIPTS_ROOT) from library.model_util import load_vae from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets, \ trigger_dataloader_setup_epoch from toolkit.config_modules import DatasetConfig import argparse parser = argparse.ArgumentParser() parser.add_argument('dataset_folder', type=str, default='input') parser.add_argument('--epochs', type=int, default=1) args = parser.parse_args() dataset_folder = args.dataset_folder resolution = 1024 bucket_tolerance = 64 batch_size = 1 ## dataset_config = DatasetConfig( dataset_path=dataset_folder, resolution=resolution, caption_ext='json', default_caption='default', buckets=True, bucket_tolerance=bucket_tolerance, poi='person', augmentations=[ { 'method': 'RandomBrightnessContrast', 'brightness_limit': (-0.3, 0.3), 'contrast_limit': (-0.3, 0.3), 'brightness_by_max': False, 'p': 1.0 }, { 'method': 'HueSaturationValue', 'hue_shift_limit': (-0, 0), 'sat_shift_limit': (-40, 40), 'val_shift_limit': (-40, 40), 'p': 1.0 }, # { # 'method': 'RGBShift', # 'r_shift_limit': (-20, 20), # 'g_shift_limit': (-20, 20), # 'b_shift_limit': (-20, 20), # 'p': 1.0 # }, ] ) dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size) # run through an epoch ang check sizes dataloader_iterator = iter(dataloader) for epoch in range(args.epochs): for batch in dataloader: batch: 'DataLoaderBatchDTO' img_batch = batch.tensor chunks = torch.chunk(img_batch, batch_size, dim=0) # put them so they are size by side big_img = torch.cat(chunks, dim=3) big_img = big_img.squeeze(0) min_val = big_img.min() max_val = big_img.max() big_img = (big_img / 2 + 0.5).clamp(0, 1) # convert to image img = transforms.ToPILImage()(big_img) show_img(img) time.sleep(1.0) # if not last epoch if epoch < args.epochs - 1: trigger_dataloader_setup_epoch(dataloader) cv2.destroyAllWindows() print('done')