import math import os from typing import TYPE_CHECKING, List, Optional import huggingface_hub import torch from toolkit.config_modules import GenerateImageConfig, ModelConfig from toolkit.memory_management.manager import MemoryManager from toolkit.metadata import get_meta_for_safetensors from toolkit.models.base_model import BaseModel from toolkit.basic import flush from toolkit.prompt_utils import PromptEmbeds from toolkit.samplers.custom_flowmatch_sampler import ( CustomFlowMatchEulerDiscreteScheduler, ) from toolkit.dequantize import patch_dequantization_on_save from toolkit.accelerator import unwrap_model from optimum.quanto import freeze, QTensor from toolkit.util.quantize import quantize, get_qtype, quantize_model from transformers import AutoProcessor, Mistral3ForConditionalGeneration from .src.model import Flux2, Flux2Params from .src.pipeline import Flux2Pipeline from .src.autoencoder import AutoEncoder, AutoEncoderParams from safetensors.torch import load_file, save_file from PIL import Image import torch.nn.functional as F if TYPE_CHECKING: from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from .src.sampling import ( batched_prc_img, batched_prc_txt, encode_image_refs, scatter_ids, ) scheduler_config = { "base_image_seq_len": 256, "base_shift": 0.5, "max_image_seq_len": 4096, "max_shift": 1.15, "num_train_timesteps": 1000, "shift": 3.0, "use_dynamic_shifting": True, } MISTRAL_PATH = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" FLUX2_VAE_FILENAME = "ae.safetensors" FLUX2_TRANSFORMER_FILENAME = "flux2-dev.safetensors" HF_TOKEN = os.getenv("HF_TOKEN", None) class Flux2Model(BaseModel): arch = "flux2" def __init__( self, device, model_config: ModelConfig, dtype="bf16", custom_pipeline=None, noise_scheduler=None, **kwargs, ): super().__init__( device, model_config, dtype, custom_pipeline, noise_scheduler, **kwargs ) self.is_flow_matching = True self.is_transformer = True self.target_lora_modules = ["Flux2"] # control images will come in as a list for encoding some things if true self.has_multiple_control_images = True # do not resize control images self.use_raw_control_images = True # static method to get the noise scheduler @staticmethod def get_train_scheduler(): return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) def get_bucket_divisibility(self): return 16 def load_model(self): dtype = self.torch_dtype self.print_and_status_update("Loading Flux2 model") # will be updated if we detect a existing checkpoint in training folder model_path = self.model_config.name_or_path transformer_path = model_path self.print_and_status_update("Loading transformer") with torch.device("meta"): transformer = Flux2(Flux2Params()) # use local path if provided if os.path.exists(os.path.join(transformer_path, FLUX2_TRANSFORMER_FILENAME)): transformer_path = os.path.join( transformer_path, FLUX2_TRANSFORMER_FILENAME ) if not os.path.exists(transformer_path): # assume it is from the hub transformer_path = huggingface_hub.hf_hub_download( repo_id=model_path, filename=FLUX2_TRANSFORMER_FILENAME, token=HF_TOKEN, ) transformer_state_dict = load_file(transformer_path, device="cpu") # cast to dtype for key in transformer_state_dict: transformer_state_dict[key] = transformer_state_dict[key].to(dtype) transformer.load_state_dict(transformer_state_dict, assign=True) transformer.to(self.quantize_device, dtype=dtype) if self.model_config.quantize: # patch the state dict method patch_dequantization_on_save(transformer) self.print_and_status_update("Quantizing Transformer") quantize_model(self, transformer) flush() else: transformer.to(self.device_torch, dtype=dtype) flush() if ( self.model_config.layer_offloading and self.model_config.layer_offloading_transformer_percent > 0 ): MemoryManager.attach( transformer, self.device_torch, offload_percent=self.model_config.layer_offloading_transformer_percent, ) if self.model_config.low_vram: self.print_and_status_update("Moving transformer to CPU") transformer.to("cpu") self.print_and_status_update("Loading Mistral") text_encoder: Mistral3ForConditionalGeneration = ( Mistral3ForConditionalGeneration.from_pretrained( MISTRAL_PATH, torch_dtype=dtype, ) ) text_encoder.to(self.device_torch, dtype=dtype) flush() if self.model_config.quantize_te: self.print_and_status_update("Quantizing Mistral") quantize(text_encoder, weights=get_qtype(self.model_config.qtype)) freeze(text_encoder) flush() if ( self.model_config.layer_offloading and self.model_config.layer_offloading_text_encoder_percent > 0 ): MemoryManager.attach( text_encoder, self.device_torch, offload_percent=self.model_config.layer_offloading_text_encoder_percent, ) tokenizer = AutoProcessor.from_pretrained(MISTRAL_PATH) self.print_and_status_update("Loading VAE") vae_path = self.model_config.vae_path if os.path.exists(os.path.join(model_path, FLUX2_VAE_FILENAME)): vae_path = os.path.join(model_path, FLUX2_VAE_FILENAME) if vae_path is None or not os.path.exists(vae_path): # assume it is from the hub vae_path = huggingface_hub.hf_hub_download( repo_id=model_path, filename=FLUX2_VAE_FILENAME, token=HF_TOKEN, ) with torch.device("meta"): vae = AutoEncoder(AutoEncoderParams()) vae_state_dict = load_file(vae_path, device="cpu") # cast to dtype for key in vae_state_dict: vae_state_dict[key] = vae_state_dict[key].to(dtype) vae.load_state_dict(vae_state_dict, assign=True) self.noise_scheduler = Flux2Model.get_train_scheduler() self.print_and_status_update("Making pipe") pipe: Flux2Pipeline = Flux2Pipeline( scheduler=self.noise_scheduler, text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, transformer=None, ) # for quantization, it works best to do these after making the pipe pipe.transformer = transformer self.print_and_status_update("Preparing Model") text_encoder = [pipe.text_encoder] tokenizer = [pipe.tokenizer] flush() # just to make sure everything is on the right device and dtype text_encoder[0].to(self.device_torch) text_encoder[0].requires_grad_(False) text_encoder[0].eval() pipe.transformer = pipe.transformer.to(self.device_torch) flush() # save it to the model class self.vae = vae self.text_encoder = text_encoder # list of text encoders self.tokenizer = tokenizer # list of tokenizers self.model = pipe.transformer self.pipeline = pipe self.print_and_status_update("Model Loaded") def get_generation_pipeline(self): scheduler = Flux2Model.get_train_scheduler() pipeline: Flux2Pipeline = Flux2Pipeline( scheduler=scheduler, text_encoder=unwrap_model(self.text_encoder[0]), tokenizer=self.tokenizer[0], vae=unwrap_model(self.vae), transformer=unwrap_model(self.transformer), ) pipeline = pipeline.to(self.device_torch) return pipeline def generate_single_image( self, pipeline: Flux2Pipeline, gen_config: GenerateImageConfig, conditional_embeds: PromptEmbeds, unconditional_embeds: PromptEmbeds, generator: torch.Generator, extra: dict, ): gen_config.width = ( gen_config.width // self.get_bucket_divisibility() ) * self.get_bucket_divisibility() gen_config.height = ( gen_config.height // self.get_bucket_divisibility() ) * self.get_bucket_divisibility() control_img_list = [] if gen_config.ctrl_img is not None: control_img = Image.open(gen_config.ctrl_img) control_img = control_img.convert("RGB") control_img_list.append(control_img) elif gen_config.ctrl_img_1 is not None: control_img = Image.open(gen_config.ctrl_img_1) control_img = control_img.convert("RGB") control_img_list.append(control_img) if gen_config.ctrl_img_2 is not None: control_img = Image.open(gen_config.ctrl_img_2) control_img = control_img.convert("RGB") control_img_list.append(control_img) if gen_config.ctrl_img_3 is not None: control_img = Image.open(gen_config.ctrl_img_3) control_img = control_img.convert("RGB") control_img_list.append(control_img) img = pipeline( prompt_embeds=conditional_embeds.text_embeds, height=gen_config.height, width=gen_config.width, num_inference_steps=gen_config.num_inference_steps, guidance_scale=gen_config.guidance_scale, latents=gen_config.latents, generator=generator, control_img_list=control_img_list, **extra, ).images[0] return img def get_noise_prediction( self, latent_model_input: torch.Tensor, timestep: torch.Tensor, # 0 to 1000 scale text_embeddings: PromptEmbeds, guidance_embedding_scale: float, batch: "DataLoaderBatchDTO" = None, **kwargs, ): with torch.no_grad(): txt, txt_ids = batched_prc_txt(text_embeddings.text_embeds) packed_latents, img_ids = batched_prc_img(latent_model_input) # prepare image conditioning if any img_cond_seq: torch.Tensor | None = None img_cond_seq_ids: torch.Tensor | None = None # handle control images if batch.control_tensor_list is not None: batch_size, num_channels_latents, height, width = ( latent_model_input.shape ) control_image_max_res = 1024 * 1024 if self.model_config.model_kwargs.get("match_target_res", False): # use the current target size to set the control image res control_image_res = ( height * self.pipeline.vae_scale_factor * width * self.pipeline.vae_scale_factor ) control_image_max_res = control_image_res if len(batch.control_tensor_list) != batch_size: raise ValueError( "Control tensor list length does not match batch size" ) for control_tensor_list in batch.control_tensor_list: # control tensor list is a list of tensors for this batch item controls = [] # pack control for control_img in control_tensor_list: # control images are 0 - 1 scale, shape (1, ch, height, width) control_img = control_img.to( self.device_torch, dtype=self.torch_dtype ) # if it is only 3 dim, add batch dim if len(control_img.shape) == 3: control_img = control_img.unsqueeze(0) # resize to fit within max res while keeping aspect ratio if self.model_config.model_kwargs.get( "match_target_res", False ): ratio = control_img.shape[2] / control_img.shape[3] c_width = math.sqrt(control_image_res * ratio) c_height = c_width / ratio c_width = round(c_width / 32) * 32 c_height = round(c_height / 32) * 32 control_img = F.interpolate( control_img, size=(c_height, c_width), mode="bilinear" ) # scale to -1 to 1 control_img = control_img * 2 - 1 controls.append(control_img) img_cond_seq_item, img_cond_seq_ids_item = encode_image_refs( self.vae, controls, limit_pixels=control_image_max_res ) if img_cond_seq is None: img_cond_seq = img_cond_seq_item img_cond_seq_ids = img_cond_seq_ids_item else: img_cond_seq = torch.cat( (img_cond_seq, img_cond_seq_item), dim=0 ) img_cond_seq_ids = torch.cat( (img_cond_seq_ids, img_cond_seq_ids_item), dim=0 ) img_input = packed_latents img_input_ids = img_ids if img_cond_seq is not None: assert img_cond_seq_ids is not None, ( "You need to provide either both or neither of the sequence conditioning" ) img_input = torch.cat((img_input, img_cond_seq), dim=1) img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1) guidance_vec = torch.full( (img_input.shape[0],), guidance_embedding_scale, device=img_input.device, dtype=img_input.dtype, ) cast_dtype = self.model.dtype packed_noise_pred = self.transformer( x=img_input.to(self.device_torch, cast_dtype), x_ids=img_input_ids.to(self.device_torch), timesteps=timestep.to(self.device_torch, cast_dtype) / 1000, ctx=txt.to(self.device_torch, cast_dtype), ctx_ids=txt_ids.to(self.device_torch), guidance=guidance_vec.to(self.device_torch, cast_dtype), ) if img_cond_seq is not None: packed_noise_pred = packed_noise_pred[:, : packed_latents.shape[1]] if isinstance(packed_noise_pred, QTensor): packed_noise_pred = packed_noise_pred.dequantize() noise_pred = torch.cat(scatter_ids(packed_noise_pred, img_ids)).squeeze(2) return noise_pred def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: if self.pipeline.text_encoder.device != self.device_torch: self.pipeline.text_encoder.to(self.device_torch) prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt( prompt, device=self.device_torch ) pe = PromptEmbeds(prompt_embeds) return pe def get_model_has_grad(self): return False def get_te_has_grad(self): return False def save_model(self, output_path, meta, save_dtype): if not output_path.endswith(".safetensors"): output_path = output_path + ".safetensors" # only save the unet transformer: Flux2 = unwrap_model(self.model) state_dict = transformer.state_dict() save_dict = {} for k, v in state_dict.items(): if isinstance(v, QTensor): v = v.dequantize() save_dict[k] = v.clone().to("cpu", dtype=save_dtype) meta = get_meta_for_safetensors(meta, name="flux2") save_file(save_dict, output_path, metadata=meta) def get_loss_target(self, *args, **kwargs): noise = kwargs.get("noise") batch = kwargs.get("batch") return (noise - batch.latents).detach() def get_base_model_version(self): return "flux2" def get_transformer_block_names(self) -> Optional[List[str]]: return ["double_blocks", "single_blocks"] def convert_lora_weights_before_save(self, state_dict): new_sd = {} for key, value in state_dict.items(): new_key = key.replace("transformer.", "diffusion_model.") new_sd[new_key] = value return new_sd def convert_lora_weights_before_load(self, state_dict): new_sd = {} for key, value in state_dict.items(): new_key = key.replace("diffusion_model.", "transformer.") new_sd[new_key] = value return new_sd def encode_images(self, image_list: List[torch.Tensor], device=None, dtype=None): if device is None: device = self.vae_device_torch if dtype is None: dtype = self.vae_torch_dtype # Move to vae to device if on cpu if self.vae.device == torch.device("cpu"): self.vae.to(device) # move to device and dtype image_list = [image.to(device, dtype=dtype) for image in image_list] images = torch.stack(image_list).to(device, dtype=dtype) latents = self.vae.encode(images) return latents