mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-02-19 11:59:58 +00:00
268 lines
10 KiB
Python
268 lines
10 KiB
Python
# ref:
|
|
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
|
|
import time
|
|
from collections import OrderedDict
|
|
import os
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
from safetensors.torch import load_file, save_file
|
|
from tqdm import tqdm
|
|
|
|
from toolkit.config_modules import SliderConfig
|
|
from toolkit.layers import ReductionKernel
|
|
from toolkit.paths import REPOS_ROOT
|
|
import sys
|
|
|
|
from toolkit.stable_diffusion_model import PromptEmbeds
|
|
from toolkit.train_pipelines import TransferStableDiffusionXLPipeline
|
|
|
|
sys.path.append(REPOS_ROOT)
|
|
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
|
|
import gc
|
|
from toolkit import train_tools
|
|
|
|
import torch
|
|
from leco import train_util, model_util
|
|
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
class RescaleConfig:
|
|
def __init__(
|
|
self,
|
|
**kwargs
|
|
):
|
|
self.from_resolution = kwargs.get('from_resolution', 512)
|
|
self.scale = kwargs.get('scale', 0.5)
|
|
self.prompt_file = kwargs.get('prompt_file', None)
|
|
self.prompt_tensors = kwargs.get('prompt_tensors', None)
|
|
self.to_resolution = kwargs.get('to_resolution', int(self.from_resolution * self.scale))
|
|
|
|
if self.prompt_file is None:
|
|
raise ValueError("prompt_file is required")
|
|
|
|
|
|
class PromptEmbedsCache:
|
|
prompts: dict[str, PromptEmbeds] = {}
|
|
|
|
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
|
|
self.prompts[__name] = __value
|
|
|
|
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
|
|
if __name in self.prompts:
|
|
return self.prompts[__name]
|
|
else:
|
|
return None
|
|
|
|
|
|
class TrainSDRescaleProcess(BaseSDTrainProcess):
|
|
def __init__(self, process_id: int, job, config: OrderedDict):
|
|
# pass our custom pipeline to super so it sets it up
|
|
super().__init__(process_id, job, config, custom_pipeline=TransferStableDiffusionXLPipeline)
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
self.prompt_cache = PromptEmbedsCache()
|
|
self.rescale_config = RescaleConfig(**self.get_conf('rescale', required=True))
|
|
self.reduce_size_fn = ReductionKernel(
|
|
in_channels=4,
|
|
kernel_size=int(self.rescale_config.from_resolution // self.rescale_config.to_resolution),
|
|
dtype=get_torch_dtype(self.train_config.dtype),
|
|
device=self.device_torch,
|
|
)
|
|
self.prompt_txt_list = []
|
|
|
|
def before_model_load(self):
|
|
pass
|
|
|
|
def hook_before_train_loop(self):
|
|
self.print(f"Loading prompt file from {self.rescale_config.prompt_file}")
|
|
|
|
# read line by line from file
|
|
with open(self.rescale_config.prompt_file, 'r') as f:
|
|
self.prompt_txt_list = f.readlines()
|
|
# clean empty lines
|
|
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
|
|
|
|
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
|
|
|
|
cache = PromptEmbedsCache()
|
|
|
|
# get encoded latents for our prompts
|
|
with torch.no_grad():
|
|
if self.rescale_config.prompt_tensors is not None:
|
|
# check to see if it exists
|
|
if os.path.exists(self.rescale_config.prompt_tensors):
|
|
# load it.
|
|
self.print(f"Loading prompt tensors from {self.rescale_config.prompt_tensors}")
|
|
prompt_tensors = load_file(self.rescale_config.prompt_tensors, device='cpu')
|
|
# add them to the cache
|
|
for prompt_txt, prompt_tensor in prompt_tensors.items():
|
|
if prompt_txt.startswith("te:"):
|
|
prompt = prompt_txt[3:]
|
|
# text_embeds
|
|
text_embeds = prompt_tensor
|
|
pooled_embeds = None
|
|
# find pool embeds
|
|
if f"pe:{prompt}" in prompt_tensors:
|
|
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
|
|
|
|
# make it
|
|
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
|
|
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
|
|
|
|
if len(cache.prompts) == 0:
|
|
print("Prompt tensors not found. Encoding prompts..")
|
|
neutral = ""
|
|
# encode neutral
|
|
cache[neutral] = self.sd.encode_prompt(neutral)
|
|
for prompt in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
|
|
# build the cache
|
|
if cache[prompt] is None:
|
|
cache[prompt] = self.sd.encode_prompt(prompt).to(device="cpu", dtype=torch.float32)
|
|
|
|
if self.rescale_config.prompt_tensors:
|
|
print(f"Saving prompt tensors to {self.rescale_config.prompt_tensors}")
|
|
state_dict = {}
|
|
for prompt_txt, prompt_embeds in cache.prompts.items():
|
|
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
|
|
dtype=get_torch_dtype('fp16'))
|
|
if prompt_embeds.pooled_embeds is not None:
|
|
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
|
|
dtype=get_torch_dtype(
|
|
'fp16'))
|
|
save_file(state_dict, self.rescale_config.prompt_tensors)
|
|
|
|
self.print("Encoding complete.")
|
|
|
|
# move to cpu to save vram
|
|
# We don't need text encoder anymore, but keep it on cpu for sampling
|
|
# if text encoder is list
|
|
if isinstance(self.sd.text_encoder, list):
|
|
for encoder in self.sd.text_encoder:
|
|
encoder.to("cpu")
|
|
else:
|
|
self.sd.text_encoder.to("cpu")
|
|
self.prompt_cache = cache
|
|
|
|
flush()
|
|
# end hook_before_train_loop
|
|
|
|
def hook_train_loop(self):
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
|
|
# get random encoded prompt from cache
|
|
prompt_txt = self.prompt_txt_list[
|
|
torch.randint(0, len(self.prompt_txt_list), (1,)).item()
|
|
]
|
|
prompt = self.prompt_cache[prompt_txt].to(device=self.device_torch, dtype=dtype)
|
|
prompt.text_embeds.to(device=self.device_torch, dtype=dtype)
|
|
neutral = self.prompt_cache[""].to(device=self.device_torch, dtype=dtype)
|
|
neutral.text_embeds.to(device=self.device_torch, dtype=dtype)
|
|
if hasattr(prompt, 'pooled_embeds') \
|
|
and hasattr(neutral, 'pooled_embeds') \
|
|
and prompt.pooled_embeds is not None \
|
|
and neutral.pooled_embeds is not None:
|
|
prompt.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
|
neutral.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
|
|
|
if prompt is None:
|
|
raise ValueError(f"Prompt {prompt_txt} is not in cache")
|
|
|
|
loss_function = torch.nn.MSELoss()
|
|
|
|
with torch.no_grad():
|
|
# self.sd.noise_scheduler.set_timesteps(
|
|
# self.train_config.max_denoising_steps, device=self.device_torch
|
|
# )
|
|
|
|
self.optimizer.zero_grad()
|
|
|
|
# # ger a random number of steps
|
|
timesteps_to = torch.randint(
|
|
1, self.train_config.max_denoising_steps, (1,)
|
|
).item()
|
|
|
|
# get noise
|
|
latents = self.get_latent_noise(
|
|
pixel_height=self.rescale_config.from_resolution,
|
|
pixel_width=self.rescale_config.from_resolution,
|
|
).to(self.device_torch, dtype=dtype)
|
|
|
|
self.sd.pipeline.to(self.device_torch)
|
|
torch.set_default_device(self.device_torch)
|
|
|
|
# turn off progress bar
|
|
self.sd.pipeline.set_progress_bar_config(disable=True)
|
|
|
|
# get random guidance scale from 1.0 to 10.0
|
|
guidance_scale = torch.rand(1).item() * 9.0 + 1.0
|
|
|
|
loss_arr = []
|
|
|
|
|
|
max_len_timestep_str = len(str(self.train_config.max_denoising_steps))
|
|
# pad with spaces
|
|
timestep_str = str(timesteps_to).rjust(max_len_timestep_str, " ")
|
|
new_description = f"{self.job.name} ts: {timestep_str}"
|
|
self.progress_bar.set_description(new_description)
|
|
|
|
def pre_condition_callback(target_pred, input_latents):
|
|
# handle any manipulations before feeding to our network
|
|
reduced_pred = self.reduce_size_fn(target_pred)
|
|
reduced_latents = self.reduce_size_fn(input_latents)
|
|
self.optimizer.zero_grad()
|
|
return reduced_pred, reduced_latents
|
|
|
|
def each_step_callback(noise_target, noise_train_pred):
|
|
noise_target.requires_grad = False
|
|
loss = loss_function(noise_target, noise_train_pred)
|
|
loss_arr.append(loss.item())
|
|
loss.backward()
|
|
self.optimizer.step()
|
|
self.lr_scheduler.step()
|
|
self.optimizer.zero_grad()
|
|
|
|
# run the pipeline
|
|
self.sd.pipeline.transfer_diffuse(
|
|
num_inference_steps=timesteps_to,
|
|
latents=latents,
|
|
prompt_embeds=prompt.text_embeds,
|
|
negative_prompt_embeds=neutral.text_embeds,
|
|
pooled_prompt_embeds=prompt.pooled_embeds,
|
|
negative_pooled_prompt_embeds=neutral.pooled_embeds,
|
|
output_type="latent",
|
|
num_images_per_prompt=self.train_config.batch_size,
|
|
guidance_scale=guidance_scale,
|
|
network=self.network,
|
|
target_unet=self.sd.unet,
|
|
pre_condition_callback=pre_condition_callback,
|
|
each_step_callback=each_step_callback,
|
|
)
|
|
|
|
flush()
|
|
|
|
# reset network
|
|
self.network.multiplier = 1.0
|
|
|
|
# average losses
|
|
s = 0
|
|
for num in loss_arr:
|
|
s += num
|
|
|
|
avg_loss = s / len(loss_arr)
|
|
|
|
loss_dict = OrderedDict(
|
|
{'loss': avg_loss},
|
|
)
|
|
|
|
return loss_dict
|
|
# end hook_train_loop
|