mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
179 lines
7.1 KiB
Python
179 lines
7.1 KiB
Python
|
|
# forward that bypasses the guidance embedding so it can be avoided during training.
|
|
from functools import partial
|
|
from typing import Optional
|
|
import torch
|
|
from diffusers import FluxTransformer2DModel
|
|
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, CombinedTimestepGuidanceTextProjEmbeddings
|
|
|
|
|
|
def guidance_embed_bypass_forward(self, timestep, guidance, pooled_projection):
|
|
timesteps_proj = self.time_proj(timestep)
|
|
timesteps_emb = self.timestep_embedder(
|
|
timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
|
pooled_projections = self.text_embedder(pooled_projection)
|
|
conditioning = timesteps_emb + pooled_projections
|
|
return conditioning
|
|
|
|
# bypass the forward function
|
|
|
|
|
|
def bypass_flux_guidance(transformer):
|
|
if hasattr(transformer.time_text_embed, '_bfg_orig_forward'):
|
|
return
|
|
# dont bypass if it doesnt have the guidance embedding
|
|
if not hasattr(transformer.time_text_embed, 'guidance_embedder'):
|
|
return
|
|
transformer.time_text_embed._bfg_orig_forward = transformer.time_text_embed.forward
|
|
transformer.time_text_embed.forward = partial(
|
|
guidance_embed_bypass_forward, transformer.time_text_embed
|
|
)
|
|
|
|
# restore the forward function
|
|
|
|
|
|
def restore_flux_guidance(transformer):
|
|
if not hasattr(transformer.time_text_embed, '_bfg_orig_forward'):
|
|
return
|
|
transformer.time_text_embed.forward = transformer.time_text_embed._bfg_orig_forward
|
|
del transformer.time_text_embed._bfg_orig_forward
|
|
|
|
def new_device_to(self: FluxTransformer2DModel, *args, **kwargs):
|
|
# Store original device if provided in args or kwargs
|
|
device_in_kwargs = 'device' in kwargs
|
|
device_in_args = any(isinstance(arg, (str, torch.device)) for arg in args)
|
|
|
|
device = None
|
|
# Remove device from kwargs if present
|
|
if device_in_kwargs:
|
|
device = kwargs['device']
|
|
del kwargs['device']
|
|
|
|
# Only filter args if we detected a device argument
|
|
if device_in_args:
|
|
args = list(args)
|
|
for idx, arg in enumerate(args):
|
|
if isinstance(arg, (str, torch.device)):
|
|
device = arg
|
|
del args[idx]
|
|
|
|
self.pos_embed = self.pos_embed.to(device, *args, **kwargs)
|
|
self.time_text_embed = self.time_text_embed.to(device, *args, **kwargs)
|
|
self.context_embedder = self.context_embedder.to(device, *args, **kwargs)
|
|
self.x_embedder = self.x_embedder.to(device, *args, **kwargs)
|
|
for block in self.transformer_blocks:
|
|
block.to(block._split_device, *args, **kwargs)
|
|
for block in self.single_transformer_blocks:
|
|
block.to(block._split_device, *args, **kwargs)
|
|
|
|
self.norm_out = self.norm_out.to(device, *args, **kwargs)
|
|
self.proj_out = self.proj_out.to(device, *args, **kwargs)
|
|
|
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def split_gpu_double_block_forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
joint_attention_kwargs=None,
|
|
):
|
|
if hidden_states.device != self._split_device:
|
|
hidden_states = hidden_states.to(self._split_device)
|
|
if encoder_hidden_states.device != self._split_device:
|
|
encoder_hidden_states = encoder_hidden_states.to(self._split_device)
|
|
if temb.device != self._split_device:
|
|
temb = temb.to(self._split_device)
|
|
if image_rotary_emb is not None and image_rotary_emb[0].device != self._split_device:
|
|
# is a tuple of tensors
|
|
image_rotary_emb = tuple([t.to(self._split_device) for t in image_rotary_emb])
|
|
return self._pre_gpu_split_forward(hidden_states, encoder_hidden_states, temb, image_rotary_emb, joint_attention_kwargs)
|
|
|
|
|
|
def split_gpu_single_block_forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: torch.FloatTensor,
|
|
image_rotary_emb=None,
|
|
joint_attention_kwargs=None,
|
|
**kwargs
|
|
):
|
|
if hidden_states.device != self._split_device:
|
|
hidden_states = hidden_states.to(device=self._split_device)
|
|
if temb.device != self._split_device:
|
|
temb = temb.to(device=self._split_device)
|
|
if image_rotary_emb is not None and image_rotary_emb[0].device != self._split_device:
|
|
# is a tuple of tensors
|
|
image_rotary_emb = tuple([t.to(self._split_device) for t in image_rotary_emb])
|
|
|
|
hidden_state_out = self._pre_gpu_split_forward(hidden_states, temb, image_rotary_emb, joint_attention_kwargs, **kwargs)
|
|
if hasattr(self, "_split_output_device"):
|
|
return hidden_state_out.to(self._split_output_device)
|
|
return hidden_state_out
|
|
|
|
|
|
def add_model_gpu_splitter_to_flux(
|
|
transformer: FluxTransformer2DModel,
|
|
# ~ 5 billion for all other params
|
|
other_module_params: Optional[int] = 5e9,
|
|
# since they are not trainable, multiply by smaller number
|
|
other_module_param_count_scale: Optional[float] = 0.3
|
|
):
|
|
gpu_id_list = [i for i in range(torch.cuda.device_count())]
|
|
|
|
# if len(gpu_id_list) > 2:
|
|
# raise ValueError("Cannot split to more than 2 GPUs currently.")
|
|
other_module_params *= other_module_param_count_scale
|
|
|
|
# since we are not tuning the
|
|
total_params = sum(p.numel() for p in transformer.parameters()) + other_module_params
|
|
|
|
params_per_gpu = total_params / len(gpu_id_list)
|
|
|
|
current_gpu_idx = 0
|
|
# text encoders, vae, and some non block layers will all be on gpu 0
|
|
current_gpu_params = other_module_params
|
|
|
|
for double_block in transformer.transformer_blocks:
|
|
device = torch.device(f"cuda:{current_gpu_idx}")
|
|
double_block._pre_gpu_split_forward = double_block.forward
|
|
double_block.forward = partial(
|
|
split_gpu_double_block_forward, double_block)
|
|
double_block._split_device = device
|
|
# add the params to the current gpu
|
|
current_gpu_params += sum(p.numel() for p in double_block.parameters())
|
|
# if the current gpu params are greater than the params per gpu, move to next gpu
|
|
if current_gpu_params > params_per_gpu:
|
|
current_gpu_idx += 1
|
|
current_gpu_params = 0
|
|
if current_gpu_idx >= len(gpu_id_list):
|
|
current_gpu_idx = gpu_id_list[-1]
|
|
|
|
for single_block in transformer.single_transformer_blocks:
|
|
device = torch.device(f"cuda:{current_gpu_idx}")
|
|
single_block._pre_gpu_split_forward = single_block.forward
|
|
single_block.forward = partial(
|
|
split_gpu_single_block_forward, single_block)
|
|
single_block._split_device = device
|
|
# add the params to the current gpu
|
|
current_gpu_params += sum(p.numel() for p in single_block.parameters())
|
|
# if the current gpu params are greater than the params per gpu, move to next gpu
|
|
if current_gpu_params > params_per_gpu:
|
|
current_gpu_idx += 1
|
|
current_gpu_params = 0
|
|
if current_gpu_idx >= len(gpu_id_list):
|
|
current_gpu_idx = gpu_id_list[-1]
|
|
|
|
# add output device to last layer
|
|
transformer.single_transformer_blocks[-1]._split_output_device = torch.device("cuda:0")
|
|
|
|
transformer._pre_gpu_split_to = transformer.to
|
|
transformer.to = partial(new_device_to, transformer)
|
|
|