mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
497 lines
18 KiB
Python
497 lines
18 KiB
Python
import math
|
|
import os
|
|
from typing import TYPE_CHECKING, List, Optional
|
|
|
|
import huggingface_hub
|
|
import torch
|
|
from toolkit.config_modules import GenerateImageConfig, ModelConfig
|
|
from toolkit.memory_management.manager import MemoryManager
|
|
from toolkit.metadata import get_meta_for_safetensors
|
|
from toolkit.models.base_model import BaseModel
|
|
from toolkit.basic import flush
|
|
from toolkit.prompt_utils import PromptEmbeds
|
|
from toolkit.samplers.custom_flowmatch_sampler import (
|
|
CustomFlowMatchEulerDiscreteScheduler,
|
|
)
|
|
from toolkit.dequantize import patch_dequantization_on_save
|
|
from toolkit.accelerator import unwrap_model
|
|
from optimum.quanto import freeze, QTensor
|
|
from toolkit.util.quantize import quantize, get_qtype, quantize_model
|
|
|
|
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
|
|
from .src.model import Flux2, Flux2Params
|
|
from .src.pipeline import Flux2Pipeline
|
|
from .src.autoencoder import AutoEncoder, AutoEncoderParams
|
|
from safetensors.torch import load_file, save_file
|
|
from PIL import Image
|
|
import torch.nn.functional as F
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
|
|
|
from .src.sampling import (
|
|
batched_prc_img,
|
|
batched_prc_txt,
|
|
encode_image_refs,
|
|
scatter_ids,
|
|
)
|
|
|
|
scheduler_config = {
|
|
"base_image_seq_len": 256,
|
|
"base_shift": 0.5,
|
|
"max_image_seq_len": 4096,
|
|
"max_shift": 1.15,
|
|
"num_train_timesteps": 1000,
|
|
"shift": 3.0,
|
|
"use_dynamic_shifting": True,
|
|
}
|
|
|
|
MISTRAL_PATH = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
|
FLUX2_VAE_FILENAME = "ae.safetensors"
|
|
FLUX2_TRANSFORMER_FILENAME = "flux2-dev.safetensors"
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
|
|
|
|
|
class Flux2Model(BaseModel):
|
|
arch = "flux2"
|
|
|
|
def __init__(
|
|
self,
|
|
device,
|
|
model_config: ModelConfig,
|
|
dtype="bf16",
|
|
custom_pipeline=None,
|
|
noise_scheduler=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
device, model_config, dtype, custom_pipeline, noise_scheduler, **kwargs
|
|
)
|
|
self.is_flow_matching = True
|
|
self.is_transformer = True
|
|
self.target_lora_modules = ["Flux2"]
|
|
# control images will come in as a list for encoding some things if true
|
|
self.has_multiple_control_images = True
|
|
# do not resize control images
|
|
self.use_raw_control_images = True
|
|
|
|
# static method to get the noise scheduler
|
|
@staticmethod
|
|
def get_train_scheduler():
|
|
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
|
|
|
|
def get_bucket_divisibility(self):
|
|
return 16
|
|
|
|
def load_model(self):
|
|
dtype = self.torch_dtype
|
|
self.print_and_status_update("Loading Flux2 model")
|
|
# will be updated if we detect a existing checkpoint in training folder
|
|
model_path = self.model_config.name_or_path
|
|
transformer_path = model_path
|
|
|
|
self.print_and_status_update("Loading transformer")
|
|
with torch.device("meta"):
|
|
transformer = Flux2(Flux2Params())
|
|
|
|
# use local path if provided
|
|
if os.path.exists(os.path.join(transformer_path, FLUX2_TRANSFORMER_FILENAME)):
|
|
transformer_path = os.path.join(
|
|
transformer_path, FLUX2_TRANSFORMER_FILENAME
|
|
)
|
|
|
|
if not os.path.exists(transformer_path):
|
|
# assume it is from the hub
|
|
transformer_path = huggingface_hub.hf_hub_download(
|
|
repo_id=model_path,
|
|
filename=FLUX2_TRANSFORMER_FILENAME,
|
|
token=HF_TOKEN,
|
|
)
|
|
|
|
transformer_state_dict = load_file(transformer_path, device="cpu")
|
|
|
|
# cast to dtype
|
|
for key in transformer_state_dict:
|
|
transformer_state_dict[key] = transformer_state_dict[key].to(dtype)
|
|
|
|
transformer.load_state_dict(transformer_state_dict, assign=True)
|
|
|
|
transformer.to(self.quantize_device, dtype=dtype)
|
|
|
|
if self.model_config.quantize:
|
|
# patch the state dict method
|
|
patch_dequantization_on_save(transformer)
|
|
self.print_and_status_update("Quantizing Transformer")
|
|
quantize_model(self, transformer)
|
|
flush()
|
|
else:
|
|
transformer.to(self.device_torch, dtype=dtype)
|
|
flush()
|
|
|
|
if (
|
|
self.model_config.layer_offloading
|
|
and self.model_config.layer_offloading_transformer_percent > 0
|
|
):
|
|
MemoryManager.attach(
|
|
transformer,
|
|
self.device_torch,
|
|
offload_percent=self.model_config.layer_offloading_transformer_percent,
|
|
)
|
|
|
|
if self.model_config.low_vram:
|
|
self.print_and_status_update("Moving transformer to CPU")
|
|
transformer.to("cpu")
|
|
|
|
self.print_and_status_update("Loading Mistral")
|
|
|
|
text_encoder: Mistral3ForConditionalGeneration = (
|
|
Mistral3ForConditionalGeneration.from_pretrained(
|
|
MISTRAL_PATH,
|
|
torch_dtype=dtype,
|
|
)
|
|
)
|
|
text_encoder.to(self.device_torch, dtype=dtype)
|
|
|
|
flush()
|
|
|
|
if self.model_config.quantize_te:
|
|
self.print_and_status_update("Quantizing Mistral")
|
|
quantize(text_encoder, weights=get_qtype(self.model_config.qtype))
|
|
freeze(text_encoder)
|
|
flush()
|
|
|
|
if (
|
|
self.model_config.layer_offloading
|
|
and self.model_config.layer_offloading_text_encoder_percent > 0
|
|
):
|
|
MemoryManager.attach(
|
|
text_encoder,
|
|
self.device_torch,
|
|
offload_percent=self.model_config.layer_offloading_text_encoder_percent,
|
|
)
|
|
|
|
tokenizer = AutoProcessor.from_pretrained(MISTRAL_PATH)
|
|
|
|
self.print_and_status_update("Loading VAE")
|
|
vae_path = self.model_config.vae_path
|
|
|
|
if os.path.exists(os.path.join(model_path, FLUX2_VAE_FILENAME)):
|
|
vae_path = os.path.join(model_path, FLUX2_VAE_FILENAME)
|
|
|
|
if vae_path is None or not os.path.exists(vae_path):
|
|
# assume it is from the hub
|
|
vae_path = huggingface_hub.hf_hub_download(
|
|
repo_id=model_path,
|
|
filename=FLUX2_VAE_FILENAME,
|
|
token=HF_TOKEN,
|
|
)
|
|
with torch.device("meta"):
|
|
vae = AutoEncoder(AutoEncoderParams())
|
|
|
|
vae_state_dict = load_file(vae_path, device="cpu")
|
|
|
|
# cast to dtype
|
|
for key in vae_state_dict:
|
|
vae_state_dict[key] = vae_state_dict[key].to(dtype)
|
|
|
|
vae.load_state_dict(vae_state_dict, assign=True)
|
|
|
|
self.noise_scheduler = Flux2Model.get_train_scheduler()
|
|
|
|
self.print_and_status_update("Making pipe")
|
|
|
|
pipe: Flux2Pipeline = Flux2Pipeline(
|
|
scheduler=self.noise_scheduler,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
vae=vae,
|
|
transformer=None,
|
|
)
|
|
# for quantization, it works best to do these after making the pipe
|
|
pipe.transformer = transformer
|
|
|
|
self.print_and_status_update("Preparing Model")
|
|
|
|
text_encoder = [pipe.text_encoder]
|
|
tokenizer = [pipe.tokenizer]
|
|
|
|
flush()
|
|
# just to make sure everything is on the right device and dtype
|
|
text_encoder[0].to(self.device_torch)
|
|
text_encoder[0].requires_grad_(False)
|
|
text_encoder[0].eval()
|
|
pipe.transformer = pipe.transformer.to(self.device_torch)
|
|
flush()
|
|
|
|
# save it to the model class
|
|
self.vae = vae
|
|
self.text_encoder = text_encoder # list of text encoders
|
|
self.tokenizer = tokenizer # list of tokenizers
|
|
self.model = pipe.transformer
|
|
self.pipeline = pipe
|
|
self.print_and_status_update("Model Loaded")
|
|
|
|
def get_generation_pipeline(self):
|
|
scheduler = Flux2Model.get_train_scheduler()
|
|
|
|
pipeline: Flux2Pipeline = Flux2Pipeline(
|
|
scheduler=scheduler,
|
|
text_encoder=unwrap_model(self.text_encoder[0]),
|
|
tokenizer=self.tokenizer[0],
|
|
vae=unwrap_model(self.vae),
|
|
transformer=unwrap_model(self.transformer),
|
|
)
|
|
|
|
pipeline = pipeline.to(self.device_torch)
|
|
|
|
return pipeline
|
|
|
|
def generate_single_image(
|
|
self,
|
|
pipeline: Flux2Pipeline,
|
|
gen_config: GenerateImageConfig,
|
|
conditional_embeds: PromptEmbeds,
|
|
unconditional_embeds: PromptEmbeds,
|
|
generator: torch.Generator,
|
|
extra: dict,
|
|
):
|
|
gen_config.width = (
|
|
gen_config.width // self.get_bucket_divisibility()
|
|
) * self.get_bucket_divisibility()
|
|
gen_config.height = (
|
|
gen_config.height // self.get_bucket_divisibility()
|
|
) * self.get_bucket_divisibility()
|
|
|
|
control_img_list = []
|
|
if gen_config.ctrl_img is not None:
|
|
control_img = Image.open(gen_config.ctrl_img)
|
|
control_img = control_img.convert("RGB")
|
|
control_img_list.append(control_img)
|
|
elif gen_config.ctrl_img_1 is not None:
|
|
control_img = Image.open(gen_config.ctrl_img_1)
|
|
control_img = control_img.convert("RGB")
|
|
control_img_list.append(control_img)
|
|
if gen_config.ctrl_img_2 is not None:
|
|
control_img = Image.open(gen_config.ctrl_img_2)
|
|
control_img = control_img.convert("RGB")
|
|
control_img_list.append(control_img)
|
|
if gen_config.ctrl_img_3 is not None:
|
|
control_img = Image.open(gen_config.ctrl_img_3)
|
|
control_img = control_img.convert("RGB")
|
|
control_img_list.append(control_img)
|
|
|
|
img = pipeline(
|
|
prompt_embeds=conditional_embeds.text_embeds,
|
|
height=gen_config.height,
|
|
width=gen_config.width,
|
|
num_inference_steps=gen_config.num_inference_steps,
|
|
guidance_scale=gen_config.guidance_scale,
|
|
latents=gen_config.latents,
|
|
generator=generator,
|
|
control_img_list=control_img_list,
|
|
**extra,
|
|
).images[0]
|
|
return img
|
|
|
|
def get_noise_prediction(
|
|
self,
|
|
latent_model_input: torch.Tensor,
|
|
timestep: torch.Tensor, # 0 to 1000 scale
|
|
text_embeddings: PromptEmbeds,
|
|
guidance_embedding_scale: float,
|
|
batch: "DataLoaderBatchDTO" = None,
|
|
**kwargs,
|
|
):
|
|
with torch.no_grad():
|
|
txt, txt_ids = batched_prc_txt(text_embeddings.text_embeds)
|
|
packed_latents, img_ids = batched_prc_img(latent_model_input)
|
|
|
|
# prepare image conditioning if any
|
|
img_cond_seq: torch.Tensor | None = None
|
|
img_cond_seq_ids: torch.Tensor | None = None
|
|
|
|
# handle control images
|
|
batch_control_tensor_list = batch.control_tensor_list
|
|
if batch_control_tensor_list is None and batch.control_tensor is not None:
|
|
batch_control_tensor_list = []
|
|
for b in range(latent_model_input.shape[0]):
|
|
batch_control_tensor_list.append(batch.control_tensor[b : b + 1])
|
|
|
|
if batch_control_tensor_list is not None:
|
|
batch_size, num_channels_latents, height, width = (
|
|
latent_model_input.shape
|
|
)
|
|
|
|
control_image_max_res = 1024 * 1024
|
|
if self.model_config.model_kwargs.get("match_target_res", False):
|
|
# use the current target size to set the control image res
|
|
control_image_res = (
|
|
height
|
|
* self.pipeline.vae_scale_factor
|
|
* width
|
|
* self.pipeline.vae_scale_factor
|
|
)
|
|
control_image_max_res = control_image_res
|
|
|
|
if len(batch_control_tensor_list) != batch_size:
|
|
raise ValueError(
|
|
"Control tensor list length does not match batch size"
|
|
)
|
|
for control_tensor_list in batch_control_tensor_list:
|
|
# control tensor list is a list of tensors for this batch item
|
|
controls = []
|
|
# pack control
|
|
for control_img in control_tensor_list:
|
|
# control images are 0 - 1 scale, shape (1, ch, height, width)
|
|
control_img = control_img.to(
|
|
self.device_torch, dtype=self.torch_dtype
|
|
)
|
|
# if it is only 3 dim, add batch dim
|
|
if len(control_img.shape) == 3:
|
|
control_img = control_img.unsqueeze(0)
|
|
|
|
# resize to fit within max res while keeping aspect ratio
|
|
if self.model_config.model_kwargs.get(
|
|
"match_target_res", False
|
|
):
|
|
ratio = control_img.shape[2] / control_img.shape[3]
|
|
c_width = math.sqrt(control_image_res * ratio)
|
|
c_height = c_width / ratio
|
|
|
|
c_width = round(c_width / 32) * 32
|
|
c_height = round(c_height / 32) * 32
|
|
|
|
control_img = F.interpolate(
|
|
control_img, size=(c_height, c_width), mode="bilinear"
|
|
)
|
|
|
|
# scale to -1 to 1
|
|
control_img = control_img * 2 - 1
|
|
controls.append(control_img)
|
|
|
|
img_cond_seq_item, img_cond_seq_ids_item = encode_image_refs(
|
|
self.vae, controls, limit_pixels=control_image_max_res
|
|
)
|
|
if img_cond_seq is None:
|
|
img_cond_seq = img_cond_seq_item
|
|
img_cond_seq_ids = img_cond_seq_ids_item
|
|
else:
|
|
img_cond_seq = torch.cat(
|
|
(img_cond_seq, img_cond_seq_item), dim=0
|
|
)
|
|
img_cond_seq_ids = torch.cat(
|
|
(img_cond_seq_ids, img_cond_seq_ids_item), dim=0
|
|
)
|
|
|
|
img_input = packed_latents
|
|
img_input_ids = img_ids
|
|
|
|
if img_cond_seq is not None:
|
|
assert img_cond_seq_ids is not None, (
|
|
"You need to provide either both or neither of the sequence conditioning"
|
|
)
|
|
img_input = torch.cat((img_input, img_cond_seq), dim=1)
|
|
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
|
|
|
|
guidance_vec = torch.full(
|
|
(img_input.shape[0],),
|
|
guidance_embedding_scale,
|
|
device=img_input.device,
|
|
dtype=img_input.dtype,
|
|
)
|
|
|
|
cast_dtype = self.model.dtype
|
|
|
|
packed_noise_pred = self.transformer(
|
|
x=img_input.to(self.device_torch, cast_dtype),
|
|
x_ids=img_input_ids.to(self.device_torch),
|
|
timesteps=timestep.to(self.device_torch, cast_dtype) / 1000,
|
|
ctx=txt.to(self.device_torch, cast_dtype),
|
|
ctx_ids=txt_ids.to(self.device_torch),
|
|
guidance=guidance_vec.to(self.device_torch, cast_dtype),
|
|
)
|
|
|
|
if img_cond_seq is not None:
|
|
packed_noise_pred = packed_noise_pred[:, : packed_latents.shape[1]]
|
|
|
|
if isinstance(packed_noise_pred, QTensor):
|
|
packed_noise_pred = packed_noise_pred.dequantize()
|
|
|
|
noise_pred = torch.cat(scatter_ids(packed_noise_pred, img_ids)).squeeze(2)
|
|
|
|
return noise_pred
|
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
|
if self.pipeline.text_encoder.device != self.device_torch:
|
|
self.pipeline.text_encoder.to(self.device_torch)
|
|
|
|
prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt(
|
|
prompt, device=self.device_torch
|
|
)
|
|
pe = PromptEmbeds(prompt_embeds)
|
|
return pe
|
|
|
|
def get_model_has_grad(self):
|
|
return False
|
|
|
|
def get_te_has_grad(self):
|
|
return False
|
|
|
|
def save_model(self, output_path, meta, save_dtype):
|
|
if not output_path.endswith(".safetensors"):
|
|
output_path = output_path + ".safetensors"
|
|
# only save the unet
|
|
transformer: Flux2 = unwrap_model(self.model)
|
|
state_dict = transformer.state_dict()
|
|
save_dict = {}
|
|
for k, v in state_dict.items():
|
|
if isinstance(v, QTensor):
|
|
v = v.dequantize()
|
|
save_dict[k] = v.clone().to("cpu", dtype=save_dtype)
|
|
|
|
meta = get_meta_for_safetensors(meta, name="flux2")
|
|
save_file(save_dict, output_path, metadata=meta)
|
|
|
|
def get_loss_target(self, *args, **kwargs):
|
|
noise = kwargs.get("noise")
|
|
batch = kwargs.get("batch")
|
|
return (noise - batch.latents).detach()
|
|
|
|
def get_base_model_version(self):
|
|
return "flux2"
|
|
|
|
def get_transformer_block_names(self) -> Optional[List[str]]:
|
|
return ["double_blocks", "single_blocks"]
|
|
|
|
def convert_lora_weights_before_save(self, state_dict):
|
|
new_sd = {}
|
|
for key, value in state_dict.items():
|
|
new_key = key.replace("transformer.", "diffusion_model.")
|
|
new_sd[new_key] = value
|
|
return new_sd
|
|
|
|
def convert_lora_weights_before_load(self, state_dict):
|
|
new_sd = {}
|
|
for key, value in state_dict.items():
|
|
new_key = key.replace("diffusion_model.", "transformer.")
|
|
new_sd[new_key] = value
|
|
return new_sd
|
|
|
|
def encode_images(self, image_list: List[torch.Tensor], device=None, dtype=None):
|
|
if device is None:
|
|
device = self.vae_device_torch
|
|
if dtype is None:
|
|
dtype = self.vae_torch_dtype
|
|
|
|
# Move to vae to device if on cpu
|
|
if self.vae.device == torch.device("cpu"):
|
|
self.vae.to(device)
|
|
# move to device and dtype
|
|
image_list = [image.to(device, dtype=dtype) for image in image_list]
|
|
images = torch.stack(image_list).to(device, dtype=dtype)
|
|
|
|
latents = self.vae.encode(images)
|
|
|
|
return latents
|