Files
ai-toolkit/toolkit/stable_diffusion_model.py

788 lines
30 KiB
Python

import gc
import json
import typing
from typing import Union, List, Tuple
import sys
import os
from collections import OrderedDict
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
from safetensors.torch import save_file
from tqdm import tqdm
from torchvision.transforms import Resize
from library.model_util import convert_unet_state_dict_to_sd, convert_text_encoder_state_dict_to_sd_v2, \
convert_vae_state_dict, load_vae
from toolkit import train_tools
from toolkit.config_modules import ModelConfig, GenerateImageConfig
from toolkit.metadata import get_meta_for_safetensors
from toolkit.paths import REPOS_ROOT, KEYMAPS_ROOT
from toolkit.prompt_utils import inject_trigger_into_prompt, PromptEmbeds
from toolkit.saving import save_ldm_model_from_diffusers
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import torch
from library import model_util
from library.sdxl_model_util import convert_text_encoder_2_state_dict_to_sdxl
from diffusers.schedulers import DDPMScheduler
from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffusionPipeline
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
import diffusers
# tell it to shut up
diffusers.logging.set_verbosity(diffusers.logging.ERROR)
VAE_PREFIX_UNET = "vae"
SD_PREFIX_UNET = "unet"
SD_PREFIX_TEXT_ENCODER = "te"
SD_PREFIX_TEXT_ENCODER1 = "te1"
SD_PREFIX_TEXT_ENCODER2 = "te2"
# prefixed diffusers keys
DO_NOT_TRAIN_WEIGHTS = [
"unet_time_embedding.linear_1.bias",
"unet_time_embedding.linear_1.weight",
"unet_time_embedding.linear_2.bias",
"unet_time_embedding.linear_2.weight",
]
class BlankNetwork:
def __init__(self):
self.multiplier = 1.0
self.is_active = True
self.is_normalizing = False
def apply_stored_normalizer(self, target_normalize_scaler: float = 1.0):
pass
def __enter__(self):
self.is_active = True
def __exit__(self, exc_type, exc_val, exc_tb):
self.is_active = False
def flush():
torch.cuda.empty_cache()
gc.collect()
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
# if is type checking
if typing.TYPE_CHECKING:
from diffusers import \
StableDiffusionPipeline, \
AutoencoderKL, \
UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
class StableDiffusion:
pipeline: Union[None, 'StableDiffusionPipeline', 'CustomStableDiffusionXLPipeline']
vae: Union[None, 'AutoencoderKL']
unet: Union[None, 'UNet2DConditionModel']
text_encoder: Union[None, 'CLIPTextModel', List[Union['CLIPTextModel', 'CLIPTextModelWithProjection']]]
tokenizer: Union[None, 'CLIPTokenizer', List['CLIPTokenizer']]
noise_scheduler: Union[None, 'KarrasDiffusionSchedulers', 'DDPMScheduler']
device: str
dtype: str
torch_dtype: torch.dtype
device_torch: torch.device
model_config: ModelConfig
def __init__(
self,
device,
model_config: ModelConfig,
dtype='fp16',
custom_pipeline=None
):
self.custom_pipeline = custom_pipeline
self.device = device
self.dtype = dtype
self.torch_dtype = get_torch_dtype(dtype)
self.device_torch = torch.device(self.device)
self.model_config = model_config
self.prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"
# sdxl stuff
self.logit_scale = None
self.ckppt_info = None
self.is_loaded = False
# to hold network if there is one
self.network = None
self.is_xl = model_config.is_xl
self.is_v2 = model_config.is_v2
self.use_text_encoder_1 = model_config.use_text_encoder_1
self.use_text_encoder_2 = model_config.use_text_encoder_2
def load_model(self):
if self.is_loaded:
return
dtype = get_torch_dtype(self.dtype)
# TODO handle other schedulers
# sch = KDPM2DiscreteScheduler
sch = DDPMScheduler
# do our own scheduler
prediction_type = "v_prediction" if self.model_config.is_v_pred else "epsilon"
scheduler = sch(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.0120,
beta_schedule="scaled_linear",
clip_sample=False,
prediction_type=prediction_type,
steps_offset=1
)
# move the betas alphas and alphas_cumprod to device. Sometimed they get stuck on cpu, not sure why
scheduler.betas = scheduler.betas.to(self.device_torch)
scheduler.alphas = scheduler.alphas.to(self.device_torch)
scheduler.alphas_cumprod = scheduler.alphas_cumprod.to(self.device_torch)
model_path = self.model_config.name_or_path
if 'civitai.com' in self.model_config.name_or_path:
# load is a civit ai model, use the loader.
from toolkit.civitai import get_model_path_from_url
model_path = get_model_path_from_url(self.model_config.name_or_path)
if self.model_config.is_xl:
if self.custom_pipeline is not None:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionXLPipeline
# see if path exists
if not os.path.exists(model_path):
# try to load with default diffusers
pipe = pipln.from_pretrained(
model_path,
dtype=dtype,
scheduler_type='ddpm',
device=self.device_torch,
).to(self.device_torch)
else:
pipe = pipln.from_single_file(
model_path,
dtype=dtype,
scheduler_type='ddpm',
device=self.device_torch,
).to(self.device_torch)
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
for text_encoder in text_encoders:
text_encoder.to(self.device_torch, dtype=dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
text_encoder = text_encoders
else:
if self.custom_pipeline is not None:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionPipeline
# see if path exists
if not os.path.exists(model_path):
# try to load with default diffusers
pipe = pipln.from_pretrained(
model_path,
dtype=dtype,
scheduler_type='dpm',
device=self.device_torch,
load_safety_checker=False,
requires_safety_checker=False,
safety_checker=False
).to(self.device_torch)
else:
pipe = pipln.from_single_file(
model_path,
dtype=dtype,
scheduler_type='dpm',
device=self.device_torch,
load_safety_checker=False,
requires_safety_checker=False,
safety_checker=False
).to(self.device_torch)
pipe.register_to_config(requires_safety_checker=False)
text_encoder = pipe.text_encoder
text_encoder.to(self.device_torch, dtype=dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
tokenizer = pipe.tokenizer
# scheduler doesn't get set sometimes, so we set it here
pipe.scheduler = scheduler
if self.model_config.vae_path is not None:
external_vae = load_vae(self.model_config.vae_path, dtype)
pipe.vae = external_vae
self.unet = pipe.unet
self.noise_scheduler = pipe.scheduler
self.vae = pipe.vae.to(self.device_torch, dtype=dtype)
self.vae.eval()
self.vae.requires_grad_(False)
self.unet.to(self.device_torch, dtype=dtype)
self.unet.requires_grad_(False)
self.unet.eval()
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.pipeline = pipe
self.is_loaded = True
def generate_images(self, image_configs: List[GenerateImageConfig]):
# sample_folder = os.path.join(self.save_root, 'samples')
if self.network is not None:
self.network.eval()
network = self.network
else:
network = BlankNetwork()
was_network_normalizing = network.is_normalizing
# apply the normalizer if it is normalizing before inference and disable it
if network.is_normalizing:
network.apply_stored_normalizer()
network.is_normalizing = False
# save current seed state for training
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
original_device_dict = {
'vae': self.vae.device,
'unet': self.unet.device,
# 'tokenizer': self.tokenizer.device,
}
# handle sdxl text encoder
if isinstance(self.text_encoder, list):
for encoder, i in zip(self.text_encoder, range(len(self.text_encoder))):
original_device_dict[f'text_encoder_{i}'] = encoder.device
encoder.to(self.device_torch)
else:
original_device_dict['text_encoder'] = self.text_encoder.device
self.text_encoder.to(self.device_torch)
self.vae.to(self.device_torch)
self.unet.to(self.device_torch)
# TODO add clip skip
if self.is_xl:
pipeline = StableDiffusionXLPipeline(
vae=self.vae,
unet=self.unet,
text_encoder=self.text_encoder[0],
text_encoder_2=self.text_encoder[1],
tokenizer=self.tokenizer[0],
tokenizer_2=self.tokenizer[1],
scheduler=self.noise_scheduler,
add_watermarker=False,
).to(self.device_torch)
# force turn that (ruin your images with obvious green and red dots) the #$@@ off!!!
pipeline.watermark = None
else:
pipeline = StableDiffusionPipeline(
vae=self.vae,
unet=self.unet,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=self.noise_scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
).to(self.device_torch)
# disable progress bar
pipeline.set_progress_bar_config(disable=True)
start_multiplier = 1.0
if self.network is not None:
start_multiplier = self.network.multiplier
pipeline.to(self.device_torch)
with network:
with torch.no_grad():
if self.network is not None:
assert self.network.is_active
for i in tqdm(range(len(image_configs)), desc=f"Generating Images", leave=False):
gen_config = image_configs[i]
if self.network is not None:
self.network.multiplier = gen_config.network_multiplier
torch.manual_seed(gen_config.seed)
torch.cuda.manual_seed(gen_config.seed)
# todo do we disable text encoder here as well if disabled for model, or only do that for training?
if self.is_xl:
# fix guidance rescale for sdxl
# was trained on 0.7 (I believe)
grs = gen_config.guidance_rescale
if grs is None or grs < 0.00001:
grs = 0.7
img = pipeline(
prompt=gen_config.prompt,
prompt_2=gen_config.prompt_2,
negative_prompt=gen_config.negative_prompt,
negative_prompt_2=gen_config.negative_prompt_2,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
guidance_rescale=grs,
).images[0]
else:
img = pipeline(
prompt=gen_config.prompt,
negative_prompt=gen_config.negative_prompt,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
).images[0]
gen_config.save_image(img)
# clear pipeline and cache to reduce vram usage
del pipeline
torch.cuda.empty_cache()
# restore training state
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
self.vae.to(original_device_dict['vae'])
self.unet.to(original_device_dict['unet'])
if isinstance(self.text_encoder, list):
for encoder, i in zip(self.text_encoder, range(len(self.text_encoder))):
encoder.to(original_device_dict[f'text_encoder_{i}'])
else:
self.text_encoder.to(original_device_dict['text_encoder'])
if self.network is not None:
self.network.train()
self.network.multiplier = start_multiplier
self.network.is_normalizing = was_network_normalizing
# self.tokenizer.to(original_device_dict['tokenizer'])
def get_latent_noise(
self,
height=None,
width=None,
pixel_height=None,
pixel_width=None,
batch_size=1,
noise_offset=0.0,
):
if height is None and pixel_height is None:
raise ValueError("height or pixel_height must be specified")
if width is None and pixel_width is None:
raise ValueError("width or pixel_width must be specified")
if height is None:
height = pixel_height // VAE_SCALE_FACTOR
if width is None:
width = pixel_width // VAE_SCALE_FACTOR
noise = torch.randn(
(
batch_size,
UNET_IN_CHANNELS,
height,
width,
),
device="cpu",
)
noise = apply_noise_offset(noise, noise_offset)
return noise
def get_time_ids_from_latents(self, latents: torch.Tensor):
bs, ch, h, w = list(latents.shape)
height = h * VAE_SCALE_FACTOR
width = w * VAE_SCALE_FACTOR
dtype = latents.dtype
if self.is_xl:
prompt_ids = train_tools.get_add_time_ids(
height,
width,
dynamic_crops=False, # look into this
dtype=dtype,
).to(self.device_torch, dtype=dtype)
return prompt_ids
else:
return None
def predict_noise(
self,
latents: torch.Tensor,
text_embeddings: Union[PromptEmbeds, None] = None,
timestep: Union[int, torch.Tensor] = 1,
guidance_scale=7.5,
guidance_rescale=0, # 0.7 sdxl
add_time_ids=None,
conditional_embeddings: Union[PromptEmbeds, None] = None,
unconditional_embeddings: Union[PromptEmbeds, None] = None,
**kwargs,
):
# get the embeddings
if text_embeddings is None and conditional_embeddings is None:
raise ValueError("Either text_embeddings or conditional_embeddings must be specified")
if text_embeddings is None and unconditional_embeddings is not None:
text_embeddings = train_tools.concat_prompt_embeddings(
unconditional_embeddings, # negative embedding
conditional_embeddings, # positive embedding
1, # batch size
)
elif text_embeddings is None and conditional_embeddings is not None:
# not doing cfg
text_embeddings = conditional_embeddings
# CFG is comparing neg and positive, if we have concatenated embeddings
# then we are doing it, otherwise we are not and takes half the time.
do_classifier_free_guidance = True
# check if batch size of embeddings matches batch size of latents
if latents.shape[0] == text_embeddings.text_embeds.shape[0]:
do_classifier_free_guidance = False
elif latents.shape[0] * 2 != text_embeddings.text_embeds.shape[0]:
raise ValueError("Batch size of latents must be the same or half the batch size of text embeddings")
if self.is_xl:
if add_time_ids is None:
add_time_ids = self.get_time_ids_from_latents(latents)
if do_classifier_free_guidance:
# todo check this with larget batches
add_time_ids = train_tools.concat_embeddings(
add_time_ids, add_time_ids, int(latents.shape[0])
)
else:
# concat to fit batch size
add_time_ids = torch.cat([add_time_ids] * latents.shape[0])
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
else:
latent_model_input = latents
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
# todo can we zero here the second text encoder? or match a blank string?
"text_embeds": text_embeddings.pooled_embeds,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings.text_embeds,
added_cond_kwargs=added_cond_kwargs,
).sample
if do_classifier_free_guidance:
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
if guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
else:
if do_classifier_free_guidance:
# if we are doing classifier free guidance, need to double up
latent_model_input = torch.cat([latents] * 2)
else:
latent_model_input = latents
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep)
# check if we need to concat timesteps
if isinstance(timestep, torch.Tensor) and len(timestep.shape) > 1:
ts_bs = timestep.shape[0]
if ts_bs != latent_model_input.shape[0]:
if ts_bs == 1:
timestep = torch.cat([timestep] * latent_model_input.shape[0])
elif ts_bs * 2 == latent_model_input.shape[0]:
timestep = torch.cat([timestep] * 2)
else:
raise ValueError(
f"Batch size of latents {latent_model_input.shape[0]} must be the same or half the batch size of timesteps {timestep.shape[0]}")
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings.text_embeds,
).sample
if do_classifier_free_guidance:
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
if guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
return noise_pred
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
def diffuse_some_steps(
self,
latents: torch.FloatTensor,
text_embeddings: PromptEmbeds,
total_timesteps: int = 1000,
start_timesteps=0,
guidance_scale=1,
add_time_ids=None,
**kwargs,
):
for timestep in tqdm(self.noise_scheduler.timesteps[start_timesteps:total_timesteps], leave=False):
noise_pred = self.predict_noise(
latents,
text_embeddings,
timestep,
guidance_scale=guidance_scale,
add_time_ids=add_time_ids,
**kwargs,
)
latents = self.noise_scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
def encode_prompt(self, prompt, num_images_per_prompt=1) -> PromptEmbeds:
prompt = prompt
# if it is not a list, make it one
if not isinstance(prompt, list):
prompt = [prompt]
if self.is_xl:
return PromptEmbeds(
train_tools.encode_prompts_xl(
self.tokenizer,
self.text_encoder,
prompt,
num_images_per_prompt=num_images_per_prompt,
use_text_encoder_1=self.use_text_encoder_1,
use_text_encoder_2=self.use_text_encoder_2,
)
)
else:
return PromptEmbeds(
train_tools.encode_prompts(
self.tokenizer, self.text_encoder, prompt
)
)
@torch.no_grad()
def encode_images(
self,
image_list: List[torch.Tensor],
device=None,
dtype=None
):
if device is None:
device = self.device
if dtype is None:
dtype = self.torch_dtype
latent_list = []
# Move to vae to device if on cpu
if self.vae.device == 'cpu':
self.vae.to(self.device)
self.vae.eval()
self.vae.requires_grad_(False)
# move to device and dtype
image_list = [image.to(self.device, dtype=self.torch_dtype) for image in image_list]
# resize images if not divisible by 8
for i in range(len(image_list)):
image = image_list[i]
if image.shape[1] % 8 != 0 or image.shape[2] % 8 != 0:
image_list[i] = Resize((image.shape[1] // 8 * 8, image.shape[2] // 8 * 8))(image)
images = torch.stack(image_list)
flush()
latents = self.vae.encode(images).latent_dist.sample()
latents = latents * self.vae.config['scaling_factor']
latents = latents.to(device, dtype=dtype)
return latents
def decode_latents(
self,
latents: torch.Tensor,
device=None,
dtype=None
):
if device is None:
device = self.device
if dtype is None:
dtype = self.torch_dtype
# Move to vae to device if on cpu
if self.vae.device == 'cpu':
self.vae.to(self.device)
latents = latents.to(device, dtype=dtype)
latents = latents / 0.18215
images = self.vae.decode(latents).sample
images = images.to(device, dtype=dtype)
return images
def encode_image_prompt_pairs(
self,
prompt_list: List[str],
image_list: List[torch.Tensor],
device=None,
dtype=None
):
# todo check image types and expand and rescale as needed
# device and dtype are for outputs
if device is None:
device = self.device
if dtype is None:
dtype = self.torch_dtype
embedding_list = []
latent_list = []
# embed the prompts
for prompt in prompt_list:
embedding = self.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
return embedding_list, latent_list
def get_weight_by_name(self, name):
# weights begin with te{te_num}_ for text encoder
# weights begin with unet_ for unet_
if name.startswith('te'):
key = name[4:]
# text encoder
te_num = int(name[2])
if isinstance(self.text_encoder, list):
return self.text_encoder[te_num].state_dict()[key]
else:
return self.text_encoder.state_dict()[key]
elif name.startswith('unet'):
key = name[5:]
# unet
return self.unet.state_dict()[key]
raise ValueError(f"Unknown weight name: {name}")
def inject_trigger_into_prompt(self, prompt, trigger=None, to_replace_list=None, add_if_not_present=True):
return inject_trigger_into_prompt(
prompt,
trigger=trigger,
to_replace_list=to_replace_list,
add_if_not_present=add_if_not_present,
)
def state_dict(self, vae=True, text_encoder=True, unet=True):
state_dict = OrderedDict()
if vae:
for k, v in self.vae.state_dict().items():
new_key = k if k.startswith(f"{VAE_PREFIX_UNET}") else f"{VAE_PREFIX_UNET}_{k}"
state_dict[new_key] = v
if text_encoder:
if isinstance(self.text_encoder, list):
for i, encoder in enumerate(self.text_encoder):
for k, v in encoder.state_dict().items():
new_key = k if k.startswith(
f"{SD_PREFIX_TEXT_ENCODER}{i}_") else f"{SD_PREFIX_TEXT_ENCODER}{i}_{k}"
state_dict[new_key] = v
else:
for k, v in self.text_encoder.state_dict().items():
new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER}_") else f"{SD_PREFIX_TEXT_ENCODER}_{k}"
state_dict[new_key] = v
if unet:
for k, v in self.unet.state_dict().items():
new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
state_dict[new_key] = v
return state_dict
def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
version_string = '1'
if self.is_v2:
version_string = '2'
if self.is_xl:
version_string = 'sdxl'
save_ldm_model_from_diffusers(
sd=self,
output_file=output_file,
meta=meta,
save_dtype=save_dtype,
sd_version=version_string,
)
def prepare_optimizer_params(
self,
unet=False,
text_encoder=False,
text_encoder_lr=None,
unet_lr=None,
default_lr=1e-6,
):
# todo maybe only get locon ones?
# not all items are saved, to make it match, we need to match out save mappings
# and not train anything not mapped. Also add learning rate
version = 'sd1'
if self.is_xl:
version = 'sdxl'
if self.is_v2:
version = 'sd2'
mapping_filename = f"stable_diffusion_{version}.json"
mapping_path = os.path.join(KEYMAPS_ROOT, mapping_filename)
with open(mapping_path, 'r') as f:
mapping = json.load(f)
ldm_diffusers_keymap = mapping['ldm_diffusers_keymap']
trainable_parameters = []
if unet:
state_dict = self.state_dict(vae=False, unet=unet, text_encoder=False)
unet_lr = unet_lr if unet_lr is not None else default_lr
params = []
for key, diffusers_key in ldm_diffusers_keymap.items():
if diffusers_key in state_dict and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
params.append(state_dict[diffusers_key])
param_data = {"params": params, "lr": unet_lr}
trainable_parameters.append(param_data)
if text_encoder:
state_dict = self.state_dict(vae=False, unet=unet, text_encoder=text_encoder)
text_encoder_lr = text_encoder_lr if text_encoder_lr is not None else default_lr
params = []
for key, diffusers_key in ldm_diffusers_keymap.items():
if diffusers_key in state_dict and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
params.append(state_dict[diffusers_key])
param_data = {"params": params, "lr": text_encoder_lr}
trainable_parameters.append(param_data)
return trainable_parameters