mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
203 lines
7.3 KiB
Python
203 lines
7.3 KiB
Python
import copy
|
|
import random
|
|
from collections import OrderedDict
|
|
import os
|
|
from typing import Optional, Union, List
|
|
from torch.utils.data import ConcatDataset, DataLoader
|
|
from toolkit.data_loader import PairedImageDataset
|
|
from toolkit.prompt_utils import concat_prompt_embeds
|
|
from toolkit.stable_diffusion_model import StableDiffusion
|
|
from toolkit.train_tools import get_torch_dtype
|
|
import gc
|
|
from toolkit import train_tools
|
|
import torch
|
|
from jobs.process import BaseSDTrainProcess
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
class ReferenceSliderConfig:
|
|
def __init__(self, **kwargs):
|
|
self.slider_pair_folder: str = kwargs.get('slider_pair_folder', None)
|
|
self.resolutions: List[int] = kwargs.get('resolutions', [512])
|
|
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
|
|
self.target_class: int = kwargs.get('target_class', '')
|
|
|
|
|
|
class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
|
|
sd: StableDiffusion
|
|
data_loader: DataLoader = None
|
|
|
|
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
|
|
super().__init__(process_id, job, config, **kwargs)
|
|
self.prompt_txt_list = None
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
self.slider_config = ReferenceSliderConfig(**self.get_conf('slider', {}))
|
|
|
|
def load_datasets(self):
|
|
if self.data_loader is None:
|
|
print(f"Loading datasets")
|
|
datasets = []
|
|
for res in self.slider_config.resolutions:
|
|
print(f" - Dataset: {self.slider_config.slider_pair_folder}")
|
|
config = {
|
|
'path': self.slider_config.slider_pair_folder,
|
|
'size': res,
|
|
'default_prompt': self.slider_config.target_class
|
|
}
|
|
image_dataset = PairedImageDataset(config)
|
|
datasets.append(image_dataset)
|
|
|
|
concatenated_dataset = ConcatDataset(datasets)
|
|
self.data_loader = DataLoader(
|
|
concatenated_dataset,
|
|
batch_size=self.train_config.batch_size,
|
|
shuffle=True,
|
|
num_workers=2
|
|
)
|
|
|
|
def before_model_load(self):
|
|
pass
|
|
|
|
def hook_before_train_loop(self):
|
|
self.sd.vae.eval()
|
|
self.sd.vae.to(self.device_torch)
|
|
self.load_datasets()
|
|
|
|
pass
|
|
|
|
def hook_train_loop(self, batch):
|
|
with torch.no_grad():
|
|
imgs, prompts = batch
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
|
|
|
|
# split batched images in half so left is negative and right is positive
|
|
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
|
|
|
|
height = positive_images.shape[2]
|
|
width = positive_images.shape[3]
|
|
batch_size = positive_images.shape[0]
|
|
|
|
# encode the images
|
|
positive_latents = self.sd.vae.encode(positive_images).latent_dist.sample()
|
|
positive_latents = positive_latents * 0.18215
|
|
negative_latents = self.sd.vae.encode(negative_images).latent_dist.sample()
|
|
negative_latents = negative_latents * 0.18215
|
|
|
|
embedding_list = []
|
|
negative_embedding_list = []
|
|
# embed the prompts
|
|
for prompt in prompts:
|
|
embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
|
|
embedding_list.append(embedding)
|
|
# just empty for now
|
|
# todo cache this?
|
|
negative_embed = self.sd.encode_prompt('').to(self.device_torch, dtype=dtype)
|
|
negative_embedding_list.append(negative_embed)
|
|
|
|
conditional_embeds = concat_prompt_embeds(embedding_list)
|
|
unconditional_embeds = concat_prompt_embeds(negative_embedding_list)
|
|
|
|
if self.train_config.gradient_checkpointing:
|
|
# may get disabled elsewhere
|
|
self.sd.unet.enable_gradient_checkpointing()
|
|
|
|
noise_scheduler = self.sd.noise_scheduler
|
|
optimizer = self.optimizer
|
|
lr_scheduler = self.lr_scheduler
|
|
loss_function = torch.nn.MSELoss()
|
|
|
|
def get_noise_pred(neg, pos, gs, cts, dn):
|
|
return self.sd.predict_noise(
|
|
latents=dn,
|
|
text_embeddings=train_tools.concat_prompt_embeddings(
|
|
neg, # negative prompt
|
|
pos, # positive prompt
|
|
self.train_config.batch_size,
|
|
),
|
|
timestep=cts,
|
|
guidance_scale=gs,
|
|
)
|
|
|
|
with torch.no_grad():
|
|
self.sd.noise_scheduler.set_timesteps(
|
|
self.train_config.max_denoising_steps, device=self.device_torch
|
|
)
|
|
|
|
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (batch_size,), device=self.device_torch)
|
|
timesteps = timesteps.long()
|
|
|
|
# get noise
|
|
noise = self.sd.get_latent_noise(
|
|
pixel_height=height,
|
|
pixel_width=width,
|
|
batch_size=batch_size,
|
|
noise_offset=self.train_config.noise_offset,
|
|
).to(self.device_torch, dtype=dtype)
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise, timesteps)
|
|
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise, timesteps)
|
|
|
|
flush()
|
|
|
|
self.optimizer.zero_grad()
|
|
with self.network:
|
|
assert self.network.is_active
|
|
loss_list = []
|
|
for noisy_latents, network_multiplier in zip(
|
|
[noisy_positive_latents, noisy_negative_latents],
|
|
[1.0, -1.0],
|
|
):
|
|
# do positive first
|
|
self.network.multiplier = network_multiplier
|
|
|
|
noise_pred = get_noise_pred(
|
|
unconditional_embeds,
|
|
conditional_embeds,
|
|
1,
|
|
timesteps,
|
|
noisy_latents
|
|
)
|
|
|
|
if self.sd.is_v2: # check is vpred, don't want to track it down right now
|
|
# v-parameterization training
|
|
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
|
|
else:
|
|
target = noise
|
|
|
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
|
loss = loss.mean([1, 2, 3])
|
|
|
|
# todo add snr gamma here
|
|
|
|
loss = loss.mean()
|
|
# back propagate loss to free ram
|
|
loss.backward()
|
|
loss_list.append(loss.item())
|
|
|
|
flush()
|
|
|
|
# apply gradients
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
|
|
loss_float = sum(loss_list) / len(loss_list)
|
|
|
|
# reset network
|
|
self.network.multiplier = 1.0
|
|
|
|
loss_dict = OrderedDict(
|
|
{'loss': loss_float},
|
|
)
|
|
return loss_dict
|
|
# end hook_train_loop
|