Files
ai-toolkit/extensions_built_in/image_reference_slider_trainer/ImageReferenceSliderTrainerProcess.py

203 lines
7.3 KiB
Python

import copy
import random
from collections import OrderedDict
import os
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.train_tools import get_torch_dtype
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
def flush():
torch.cuda.empty_cache()
gc.collect()
class ReferenceSliderConfig:
def __init__(self, **kwargs):
self.slider_pair_folder: str = kwargs.get('slider_pair_folder', None)
self.resolutions: List[int] = kwargs.get('resolutions', [512])
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
self.target_class: int = kwargs.get('target_class', '')
class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
sd: StableDiffusion
data_loader: DataLoader = None
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = ReferenceSliderConfig(**self.get_conf('slider', {}))
def load_datasets(self):
if self.data_loader is None:
print(f"Loading datasets")
datasets = []
for res in self.slider_config.resolutions:
print(f" - Dataset: {self.slider_config.slider_pair_folder}")
config = {
'path': self.slider_config.slider_pair_folder,
'size': res,
'default_prompt': self.slider_config.target_class
}
image_dataset = PairedImageDataset(config)
datasets.append(image_dataset)
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.train_config.batch_size,
shuffle=True,
num_workers=2
)
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.sd.vae.eval()
self.sd.vae.to(self.device_torch)
self.load_datasets()
pass
def hook_train_loop(self, batch):
with torch.no_grad():
imgs, prompts = batch
dtype = get_torch_dtype(self.train_config.dtype)
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
# split batched images in half so left is negative and right is positive
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
height = positive_images.shape[2]
width = positive_images.shape[3]
batch_size = positive_images.shape[0]
# encode the images
positive_latents = self.sd.vae.encode(positive_images).latent_dist.sample()
positive_latents = positive_latents * 0.18215
negative_latents = self.sd.vae.encode(negative_images).latent_dist.sample()
negative_latents = negative_latents * 0.18215
embedding_list = []
negative_embedding_list = []
# embed the prompts
for prompt in prompts:
embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
# just empty for now
# todo cache this?
negative_embed = self.sd.encode_prompt('').to(self.device_torch, dtype=dtype)
negative_embedding_list.append(negative_embed)
conditional_embeds = concat_prompt_embeds(embedding_list)
unconditional_embeds = concat_prompt_embeds(negative_embedding_list)
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(neg, pos, gs, cts, dn):
return self.sd.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
neg, # negative prompt
pos, # positive prompt
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (batch_size,), device=self.device_torch)
timesteps = timesteps.long()
# get noise
noise = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise, timesteps)
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise, timesteps)
flush()
self.optimizer.zero_grad()
with self.network:
assert self.network.is_active
loss_list = []
for noisy_latents, network_multiplier in zip(
[noisy_positive_latents, noisy_negative_latents],
[1.0, -1.0],
):
# do positive first
self.network.multiplier = network_multiplier
noise_pred = get_noise_pred(
unconditional_embeds,
conditional_embeds,
1,
timesteps,
noisy_latents
)
if self.sd.is_v2: # check is vpred, don't want to track it down right now
# v-parameterization training
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
# todo add snr gamma here
loss = loss.mean()
# back propagate loss to free ram
loss.backward()
loss_list.append(loss.item())
flush()
# apply gradients
optimizer.step()
lr_scheduler.step()
loss_float = sum(loss_list) / len(loss_list)
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
return loss_dict
# end hook_train_loop