Files
ai-toolkit/jobs/process/TrainSliderProcess.py
2023-07-28 18:11:10 -06:00

475 lines
18 KiB
Python

# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import random
import time
from collections import OrderedDict
import os
from typing import Optional
from safetensors.torch import save_file, load_file
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.paths import REPOS_ROOT
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from leco import train_util, model_util
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
def flush():
torch.cuda.empty_cache()
gc.collect()
class EncodedPromptPair:
def __init__(
self,
target_class,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
both_targets,
empty_prompt,
weight=1.0
):
self.target_class = target_class
self.positive_target = positive_target
self.positive_target_with_neutral = positive_target_with_neutral
self.negative_target = negative_target
self.negative_target_with_neutral = negative_target_with_neutral
self.neutral = neutral
self.empty_prompt = empty_prompt
self.both_targets = both_targets
self.weight = weight
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.target_class = self.target_class.to(*args, **kwargs)
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
class TrainSliderProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
# read line by line from file
with open(self.slider_config.prompt_file, 'r') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
cache = PromptEmbedsCache()
if not self.slider_config.prompt_tensors:
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
# get encoded latents for our prompts
with torch.no_grad():
if self.slider_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.slider_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets
]
for p in prompt_list:
# build the cache
if cache[p] is None:
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
if self.slider_config.prompt_tensors:
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
dtype=get_torch_dtype(
'fp16'))
save_file(state_dict, self.slider_config.prompt_tensors)
self.print("Encoding complete. Building prompt pairs..")
for neutral in self.prompt_txt_list:
for target in self.slider_config.targets:
both_prompts_list = [
f"{target.positive} {target.negative}",
f"{target.negative} {target.positive}",
]
# randomly pick one of the both prompts to prevent bias
both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
prompt_pair = EncodedPromptPair(
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
both_targets=cache[both_prompts],
empty_prompt=cache[""],
target_class=cache[f"{target.target_class}"],
weight=target.weight,
).to(device="cpu", dtype=torch.float32)
self.prompt_pairs.append(prompt_pair)
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
# get a random resolution
height, width = self.slider_config.resolutions[
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.sd.pipeline.predict_noise(
latents=dn,
prompt_embeds=p.text_embeds,
negative_prompt_embeds=n.text_embeds,
pooled_prompt_embeds=p.pooled_embeds,
negative_pooled_prompt_embeds=n.pooled_embeds,
timestep=cts,
guidance_scale=gs,
num_images_per_prompt=self.train_config.batch_size,
num_inference_steps=1000,
)
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.get_latent_noise(
pixel_height=height,
pixel_width=width,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
denoised_fraction = timesteps_to / (self.train_config.max_denoising_steps + 1)
self.sd.pipeline.to(self.device_torch)
torch.set_default_device(self.device_torch)
self.sd.pipeline.set_progress_bar_config(disable=True)
with self.network:
assert self.network.is_active
self.network.multiplier = 1.0
POS_denoised_latents = self.sd.pipeline(
num_inference_steps=self.train_config.max_denoising_steps,
denoising_end=denoised_fraction,
latents=latents,
prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
output_type="latent",
num_images_per_prompt=self.train_config.batch_size,
guidance_scale=3,
).images.to(self.device_torch, dtype=dtype)
self.network.multiplier = -1.0
NEG_denoised_latents = self.sd.pipeline(
num_inference_steps=self.train_config.max_denoising_steps,
denoising_end=denoised_fraction,
latents=latents,
prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
output_type="latent",
num_images_per_prompt=self.train_config.batch_size,
guidance_scale=3,
).images.to(self.device_torch, dtype=dtype)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
assert not self.network.is_active
# POSITIVE LATENTS
POS_positive_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_positive_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
# NEUTRAL LATENTS
POS_neutral_latents = get_noise_pred(
prompt_pair.neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_neutral_latents = get_noise_pred(
prompt_pair.neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
# UNCONDITIONAL LATENTS
POS_unconditional_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_unconditional_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
# start grads
self.optimizer.zero_grad()
with self.network:
assert self.network.is_active
self.network.multiplier = 1.0
POS_target_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
self.network.multiplier = -1.0
NEG_target_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
POS_positive_latents.requires_grad = False
NEG_positive_latents.requires_grad = False
POS_neutral_latents.requires_grad = False
NEG_neutral_latents.requires_grad = False
POS_unconditional_latents.requires_grad = False
NEG_unconditional_latents.requires_grad = False
guidance_scale = 1.0
POS_offset = guidance_scale * (POS_positive_latents - POS_unconditional_latents)
NEG_offset = guidance_scale * (NEG_positive_latents - NEG_unconditional_latents)
erase = True
POS_offset_neutral = POS_neutral_latents
NEG_offset_neutral = NEG_neutral_latents
# if erase:
# POS_offset_neutral -= POS_offset
# NEG_offset_neutral -= NEG_offset
# else:
# # enhance
# POS_offset_neutral += POS_offset
# NEG_offset_neutral += NEG_offset
POS_erase_loss = loss_function(
POS_target_latents,
POS_neutral_latents - POS_offset,
) * prompt_pair.weight
NEG_erase_loss = loss_function(
NEG_target_latents,
NEG_neutral_latents - NEG_offset,
) * prompt_pair.weight
loss = (POS_erase_loss + NEG_erase_loss) * 0.5
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
# denoised_latents,
POS_denoised_latents,
NEG_denoised_latents,
# positive_neg_noise_prediction,
POS_positive_latents,
NEG_positive_latents,
# neutral_noise_prediction,
POS_neutral_latents,
NEG_neutral_latents,
# unconditional_noise_prediction,
POS_unconditional_latents,
NEG_unconditional_latents,
# target_noise_prediction,
POS_target_latents,
NEG_target_latents,
# offset,
POS_offset,
NEG_offset,
# offset_neutral,
POS_offset_neutral,
NEG_offset_neutral,
)
# move back to cpu
prompt_pair.to("cpu")
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{
'loss': loss.item(),
'l+er': POS_erase_loss.item(),
'l-er': NEG_erase_loss.item(),
},
)
return loss_dict
# end hook_train_loop