mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
475 lines
18 KiB
Python
475 lines
18 KiB
Python
# ref:
|
|
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
|
|
import random
|
|
import time
|
|
from collections import OrderedDict
|
|
import os
|
|
from typing import Optional
|
|
|
|
from safetensors.torch import save_file, load_file
|
|
from tqdm import tqdm
|
|
|
|
from toolkit.config_modules import SliderConfig
|
|
from toolkit.paths import REPOS_ROOT
|
|
import sys
|
|
|
|
from toolkit.stable_diffusion_model import PromptEmbeds
|
|
|
|
sys.path.append(REPOS_ROOT)
|
|
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
|
|
import gc
|
|
from toolkit import train_tools
|
|
|
|
import torch
|
|
from leco import train_util, model_util
|
|
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
|
|
|
|
|
|
class ACTION_TYPES_SLIDER:
|
|
ERASE_NEGATIVE = 0
|
|
ENHANCE_NEGATIVE = 1
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
class EncodedPromptPair:
|
|
def __init__(
|
|
self,
|
|
target_class,
|
|
positive_target,
|
|
positive_target_with_neutral,
|
|
negative_target,
|
|
negative_target_with_neutral,
|
|
neutral,
|
|
both_targets,
|
|
empty_prompt,
|
|
weight=1.0
|
|
):
|
|
self.target_class = target_class
|
|
self.positive_target = positive_target
|
|
self.positive_target_with_neutral = positive_target_with_neutral
|
|
self.negative_target = negative_target
|
|
self.negative_target_with_neutral = negative_target_with_neutral
|
|
self.neutral = neutral
|
|
self.empty_prompt = empty_prompt
|
|
self.both_targets = both_targets
|
|
self.weight = weight
|
|
|
|
# simulate torch to for tensors
|
|
def to(self, *args, **kwargs):
|
|
self.target_class = self.target_class.to(*args, **kwargs)
|
|
self.positive_target = self.positive_target.to(*args, **kwargs)
|
|
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
|
|
self.negative_target = self.negative_target.to(*args, **kwargs)
|
|
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
|
|
self.neutral = self.neutral.to(*args, **kwargs)
|
|
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
|
|
self.both_targets = self.both_targets.to(*args, **kwargs)
|
|
return self
|
|
|
|
|
|
class PromptEmbedsCache:
|
|
prompts: dict[str, PromptEmbeds] = {}
|
|
|
|
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
|
|
self.prompts[__name] = __value
|
|
|
|
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
|
|
if __name in self.prompts:
|
|
return self.prompts[__name]
|
|
else:
|
|
return None
|
|
|
|
|
|
class EncodedAnchor:
|
|
def __init__(
|
|
self,
|
|
prompt,
|
|
neg_prompt,
|
|
multiplier=1.0
|
|
):
|
|
self.prompt = prompt
|
|
self.neg_prompt = neg_prompt
|
|
self.multiplier = multiplier
|
|
|
|
|
|
class TrainSliderProcess(BaseSDTrainProcess):
|
|
def __init__(self, process_id: int, job, config: OrderedDict):
|
|
super().__init__(process_id, job, config)
|
|
self.prompt_txt_list = None
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
|
|
self.prompt_cache = PromptEmbedsCache()
|
|
self.prompt_pairs: list[EncodedPromptPair] = []
|
|
self.anchor_pairs: list[EncodedAnchor] = []
|
|
|
|
def before_model_load(self):
|
|
pass
|
|
|
|
def hook_before_train_loop(self):
|
|
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
|
|
|
|
# read line by line from file
|
|
with open(self.slider_config.prompt_file, 'r') as f:
|
|
self.prompt_txt_list = f.readlines()
|
|
# clean empty lines
|
|
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
|
|
|
|
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
|
|
|
|
cache = PromptEmbedsCache()
|
|
|
|
if not self.slider_config.prompt_tensors:
|
|
# shuffle
|
|
random.shuffle(self.prompt_txt_list)
|
|
# trim to max steps
|
|
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
|
|
# trim list to our max steps
|
|
|
|
|
|
# get encoded latents for our prompts
|
|
with torch.no_grad():
|
|
if self.slider_config.prompt_tensors is not None:
|
|
# check to see if it exists
|
|
if os.path.exists(self.slider_config.prompt_tensors):
|
|
# load it.
|
|
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
|
|
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
|
|
# add them to the cache
|
|
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
|
|
if prompt_txt.startswith("te:"):
|
|
prompt = prompt_txt[3:]
|
|
# text_embeds
|
|
text_embeds = prompt_tensor
|
|
pooled_embeds = None
|
|
# find pool embeds
|
|
if f"pe:{prompt}" in prompt_tensors:
|
|
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
|
|
|
|
# make it
|
|
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
|
|
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
|
|
|
|
if len(cache.prompts) == 0:
|
|
print("Prompt tensors not found. Encoding prompts..")
|
|
empty_prompt = ""
|
|
# encode empty_prompt
|
|
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
|
|
|
|
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
|
|
for target in self.slider_config.targets:
|
|
prompt_list = [
|
|
f"{target.target_class}", # target_class
|
|
f"{target.positive}", # positive_target
|
|
f"{target.positive} {neutral}", # positive_target with neutral
|
|
f"{target.negative}", # negative_target
|
|
f"{target.negative} {neutral}", # negative_target with neutral
|
|
f"{neutral}", # neutral
|
|
f"{target.positive} {target.negative}", # both targets
|
|
f"{target.negative} {target.positive}", # both targets
|
|
]
|
|
for p in prompt_list:
|
|
# build the cache
|
|
if cache[p] is None:
|
|
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
|
|
|
|
if self.slider_config.prompt_tensors:
|
|
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
|
|
state_dict = {}
|
|
for prompt_txt, prompt_embeds in cache.prompts.items():
|
|
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
|
|
dtype=get_torch_dtype('fp16'))
|
|
if prompt_embeds.pooled_embeds is not None:
|
|
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
|
|
dtype=get_torch_dtype(
|
|
'fp16'))
|
|
save_file(state_dict, self.slider_config.prompt_tensors)
|
|
|
|
self.print("Encoding complete. Building prompt pairs..")
|
|
for neutral in self.prompt_txt_list:
|
|
for target in self.slider_config.targets:
|
|
both_prompts_list = [
|
|
f"{target.positive} {target.negative}",
|
|
f"{target.negative} {target.positive}",
|
|
]
|
|
# randomly pick one of the both prompts to prevent bias
|
|
both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
|
|
|
|
prompt_pair = EncodedPromptPair(
|
|
positive_target=cache[f"{target.positive}"],
|
|
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
|
negative_target=cache[f"{target.negative}"],
|
|
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
|
neutral=cache[neutral],
|
|
both_targets=cache[both_prompts],
|
|
empty_prompt=cache[""],
|
|
target_class=cache[f"{target.target_class}"],
|
|
weight=target.weight,
|
|
).to(device="cpu", dtype=torch.float32)
|
|
self.prompt_pairs.append(prompt_pair)
|
|
|
|
# move to cpu to save vram
|
|
# We don't need text encoder anymore, but keep it on cpu for sampling
|
|
# if text encoder is list
|
|
if isinstance(self.sd.text_encoder, list):
|
|
for encoder in self.sd.text_encoder:
|
|
encoder.to("cpu")
|
|
else:
|
|
self.sd.text_encoder.to("cpu")
|
|
self.prompt_cache = cache
|
|
|
|
flush()
|
|
# end hook_before_train_loop
|
|
|
|
def hook_train_loop(self):
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
|
|
# get a random pair
|
|
prompt_pair: EncodedPromptPair = self.prompt_pairs[
|
|
torch.randint(0, len(self.prompt_pairs), (1,)).item()
|
|
]
|
|
# move to device and dtype
|
|
prompt_pair.to(self.device_torch, dtype=dtype)
|
|
|
|
# get a random resolution
|
|
height, width = self.slider_config.resolutions[
|
|
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
|
|
]
|
|
|
|
unet = self.sd.unet
|
|
noise_scheduler = self.sd.noise_scheduler
|
|
optimizer = self.optimizer
|
|
lr_scheduler = self.lr_scheduler
|
|
loss_function = torch.nn.MSELoss()
|
|
|
|
def get_noise_pred(p, n, gs, cts, dn):
|
|
return self.sd.pipeline.predict_noise(
|
|
latents=dn,
|
|
prompt_embeds=p.text_embeds,
|
|
negative_prompt_embeds=n.text_embeds,
|
|
pooled_prompt_embeds=p.pooled_embeds,
|
|
negative_pooled_prompt_embeds=n.pooled_embeds,
|
|
timestep=cts,
|
|
guidance_scale=gs,
|
|
num_images_per_prompt=self.train_config.batch_size,
|
|
num_inference_steps=1000,
|
|
)
|
|
|
|
with torch.no_grad():
|
|
self.sd.noise_scheduler.set_timesteps(
|
|
self.train_config.max_denoising_steps, device=self.device_torch
|
|
)
|
|
|
|
self.optimizer.zero_grad()
|
|
|
|
# ger a random number of steps
|
|
timesteps_to = torch.randint(
|
|
1, self.train_config.max_denoising_steps, (1,)
|
|
).item()
|
|
|
|
# get noise
|
|
noise = self.get_latent_noise(
|
|
pixel_height=height,
|
|
pixel_width=width,
|
|
).to(self.device_torch, dtype=dtype)
|
|
|
|
# get latents
|
|
latents = noise * self.sd.noise_scheduler.init_noise_sigma
|
|
latents = latents.to(self.device_torch, dtype=dtype)
|
|
|
|
denoised_fraction = timesteps_to / (self.train_config.max_denoising_steps + 1)
|
|
self.sd.pipeline.to(self.device_torch)
|
|
torch.set_default_device(self.device_torch)
|
|
self.sd.pipeline.set_progress_bar_config(disable=True)
|
|
|
|
with self.network:
|
|
assert self.network.is_active
|
|
self.network.multiplier = 1.0
|
|
POS_denoised_latents = self.sd.pipeline(
|
|
num_inference_steps=self.train_config.max_denoising_steps,
|
|
denoising_end=denoised_fraction,
|
|
latents=latents,
|
|
prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
|
|
negative_prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
|
|
pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
|
|
negative_pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
|
|
output_type="latent",
|
|
num_images_per_prompt=self.train_config.batch_size,
|
|
guidance_scale=3,
|
|
).images.to(self.device_torch, dtype=dtype)
|
|
|
|
self.network.multiplier = -1.0
|
|
NEG_denoised_latents = self.sd.pipeline(
|
|
num_inference_steps=self.train_config.max_denoising_steps,
|
|
denoising_end=denoised_fraction,
|
|
latents=latents,
|
|
prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
|
|
negative_prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
|
|
pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
|
|
negative_pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
|
|
output_type="latent",
|
|
num_images_per_prompt=self.train_config.batch_size,
|
|
guidance_scale=3,
|
|
).images.to(self.device_torch, dtype=dtype)
|
|
|
|
noise_scheduler.set_timesteps(1000)
|
|
|
|
current_timestep = noise_scheduler.timesteps[
|
|
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
|
|
]
|
|
|
|
assert not self.network.is_active
|
|
|
|
|
|
# POSITIVE LATENTS
|
|
POS_positive_latents = get_noise_pred(
|
|
prompt_pair.negative_target_with_neutral,
|
|
prompt_pair.positive_target_with_neutral,
|
|
1, current_timestep, POS_denoised_latents,
|
|
)
|
|
NEG_positive_latents = get_noise_pred(
|
|
prompt_pair.positive_target_with_neutral,
|
|
prompt_pair.negative_target_with_neutral,
|
|
1, current_timestep, NEG_denoised_latents,
|
|
)
|
|
|
|
|
|
# NEUTRAL LATENTS
|
|
POS_neutral_latents = get_noise_pred(
|
|
prompt_pair.neutral,
|
|
prompt_pair.positive_target_with_neutral,
|
|
1, current_timestep, POS_denoised_latents,
|
|
)
|
|
NEG_neutral_latents = get_noise_pred(
|
|
prompt_pair.neutral,
|
|
prompt_pair.negative_target_with_neutral,
|
|
1, current_timestep, NEG_denoised_latents,
|
|
)
|
|
|
|
|
|
# UNCONDITIONAL LATENTS
|
|
POS_unconditional_latents = get_noise_pred(
|
|
prompt_pair.positive_target_with_neutral,
|
|
prompt_pair.positive_target_with_neutral,
|
|
1, current_timestep, POS_denoised_latents,
|
|
)
|
|
NEG_unconditional_latents = get_noise_pred(
|
|
prompt_pair.negative_target_with_neutral,
|
|
prompt_pair.negative_target_with_neutral,
|
|
1, current_timestep, NEG_denoised_latents,
|
|
)
|
|
|
|
|
|
# start grads
|
|
self.optimizer.zero_grad()
|
|
|
|
with self.network:
|
|
assert self.network.is_active
|
|
self.network.multiplier = 1.0
|
|
POS_target_latents = get_noise_pred(
|
|
prompt_pair.negative_target_with_neutral,
|
|
prompt_pair.positive_target_with_neutral,
|
|
1, current_timestep, POS_denoised_latents,
|
|
)
|
|
|
|
self.network.multiplier = -1.0
|
|
NEG_target_latents = get_noise_pred(
|
|
prompt_pair.positive_target_with_neutral,
|
|
prompt_pair.negative_target_with_neutral,
|
|
1, current_timestep, NEG_denoised_latents,
|
|
)
|
|
|
|
POS_positive_latents.requires_grad = False
|
|
NEG_positive_latents.requires_grad = False
|
|
POS_neutral_latents.requires_grad = False
|
|
NEG_neutral_latents.requires_grad = False
|
|
POS_unconditional_latents.requires_grad = False
|
|
NEG_unconditional_latents.requires_grad = False
|
|
|
|
guidance_scale = 1.0
|
|
|
|
POS_offset = guidance_scale * (POS_positive_latents - POS_unconditional_latents)
|
|
NEG_offset = guidance_scale * (NEG_positive_latents - NEG_unconditional_latents)
|
|
|
|
erase = True
|
|
|
|
POS_offset_neutral = POS_neutral_latents
|
|
NEG_offset_neutral = NEG_neutral_latents
|
|
# if erase:
|
|
# POS_offset_neutral -= POS_offset
|
|
# NEG_offset_neutral -= NEG_offset
|
|
# else:
|
|
# # enhance
|
|
# POS_offset_neutral += POS_offset
|
|
# NEG_offset_neutral += NEG_offset
|
|
|
|
POS_erase_loss = loss_function(
|
|
POS_target_latents,
|
|
POS_neutral_latents - POS_offset,
|
|
) * prompt_pair.weight
|
|
|
|
NEG_erase_loss = loss_function(
|
|
NEG_target_latents,
|
|
NEG_neutral_latents - NEG_offset,
|
|
) * prompt_pair.weight
|
|
|
|
|
|
loss = (POS_erase_loss + NEG_erase_loss) * 0.5
|
|
|
|
loss_float = loss.item()
|
|
|
|
loss = loss.to(self.device_torch)
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
|
|
del (
|
|
# denoised_latents,
|
|
POS_denoised_latents,
|
|
NEG_denoised_latents,
|
|
# positive_neg_noise_prediction,
|
|
POS_positive_latents,
|
|
NEG_positive_latents,
|
|
# neutral_noise_prediction,
|
|
POS_neutral_latents,
|
|
NEG_neutral_latents,
|
|
# unconditional_noise_prediction,
|
|
POS_unconditional_latents,
|
|
NEG_unconditional_latents,
|
|
# target_noise_prediction,
|
|
POS_target_latents,
|
|
NEG_target_latents,
|
|
# offset,
|
|
POS_offset,
|
|
NEG_offset,
|
|
# offset_neutral,
|
|
POS_offset_neutral,
|
|
NEG_offset_neutral,
|
|
|
|
)
|
|
# move back to cpu
|
|
prompt_pair.to("cpu")
|
|
flush()
|
|
|
|
# reset network
|
|
self.network.multiplier = 1.0
|
|
|
|
loss_dict = OrderedDict(
|
|
{
|
|
'loss': loss.item(),
|
|
'l+er': POS_erase_loss.item(),
|
|
'l-er': NEG_erase_loss.item(),
|
|
},
|
|
)
|
|
|
|
return loss_dict
|
|
# end hook_train_loop
|