mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
368 lines
12 KiB
Python
368 lines
12 KiB
Python
import torch
|
|
import os
|
|
from torch import nn
|
|
from safetensors.torch import load_file
|
|
import torch.nn.functional as F
|
|
from diffusers import AutoencoderTiny
|
|
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
import lpips
|
|
|
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)
|
|
self.norm1 = nn.GroupNorm(8, out_channels)
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
|
|
self.norm2 = nn.GroupNorm(8, out_channels)
|
|
self.skip = nn.Conv2d(in_channels, out_channels,
|
|
1) if in_channels != out_channels else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
identity = self.skip(x)
|
|
x = self.conv1(x)
|
|
x = self.norm1(x)
|
|
x = F.silu(x)
|
|
x = self.conv2(x)
|
|
x = self.norm2(x)
|
|
x = F.silu(x + identity)
|
|
return x
|
|
|
|
|
|
class DiffusionFeatureExtractor2(nn.Module):
|
|
def __init__(self, in_channels=32):
|
|
super().__init__()
|
|
self.version = 2
|
|
|
|
# Path 1: Upsample to 512x512 (1, 64, 512, 512)
|
|
self.up_path = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 64, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Conv2d(64, 64, 3, padding=1),
|
|
])
|
|
|
|
# Path 2: Upsample to 256x256 (1, 128, 256, 256)
|
|
self.path2 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 128, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(128, 128),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(128, 128),
|
|
nn.Conv2d(128, 128, 3, padding=1),
|
|
])
|
|
|
|
# Path 3: Upsample to 128x128 (1, 256, 128, 128)
|
|
self.path3 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 256, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(256, 256),
|
|
nn.Conv2d(256, 256, 3, padding=1)
|
|
])
|
|
|
|
# Path 4: Original size (1, 512, 64, 64)
|
|
self.path4 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 512, 3, padding=1),
|
|
ResBlock(512, 512),
|
|
ResBlock(512, 512),
|
|
nn.Conv2d(512, 512, 3, padding=1)
|
|
])
|
|
|
|
# Path 5: Downsample to 32x32 (1, 512, 32, 32)
|
|
self.path5 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 512, 3, padding=1),
|
|
ResBlock(512, 512),
|
|
nn.AvgPool2d(2),
|
|
ResBlock(512, 512),
|
|
nn.Conv2d(512, 512, 3, padding=1)
|
|
])
|
|
|
|
def forward(self, x):
|
|
outputs = []
|
|
|
|
# Path 1: 512x512
|
|
x1 = x
|
|
for layer in self.up_path:
|
|
x1 = layer(x1)
|
|
outputs.append(x1) # [1, 64, 512, 512]
|
|
|
|
# Path 2: 256x256
|
|
x2 = x
|
|
for layer in self.path2:
|
|
x2 = layer(x2)
|
|
outputs.append(x2) # [1, 128, 256, 256]
|
|
|
|
# Path 3: 128x128
|
|
x3 = x
|
|
for layer in self.path3:
|
|
x3 = layer(x3)
|
|
outputs.append(x3) # [1, 256, 128, 128]
|
|
|
|
# Path 4: 64x64
|
|
x4 = x
|
|
for layer in self.path4:
|
|
x4 = layer(x4)
|
|
outputs.append(x4) # [1, 512, 64, 64]
|
|
|
|
# Path 5: 32x32
|
|
x5 = x
|
|
for layer in self.path5:
|
|
x5 = layer(x5)
|
|
outputs.append(x5) # [1, 512, 32, 32]
|
|
|
|
return outputs
|
|
|
|
|
|
class DFEBlock(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.act = nn.GELU()
|
|
|
|
def forward(self, x):
|
|
x_in = x
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
x = self.act(x)
|
|
x = x + x_in
|
|
return x
|
|
|
|
|
|
class DiffusionFeatureExtractor(nn.Module):
|
|
def __init__(self, in_channels=32):
|
|
super().__init__()
|
|
self.version = 1
|
|
num_blocks = 6
|
|
self.conv_in = nn.Conv2d(in_channels, 512, 1)
|
|
self.blocks = nn.ModuleList([DFEBlock(512) for _ in range(num_blocks)])
|
|
self.conv_out = nn.Conv2d(512, 512, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_in(x)
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.conv_out(x)
|
|
return x
|
|
|
|
|
|
class DiffusionFeatureExtractor3(nn.Module):
|
|
def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16):
|
|
super().__init__()
|
|
self.version = 3
|
|
vae = AutoencoderTiny.from_pretrained(
|
|
"madebyollin/taef1", torch_dtype=torch.bfloat16)
|
|
self.vae = vae
|
|
image_encoder_path = "google/siglip-so400m-patch14-384"
|
|
try:
|
|
self.image_processor = SiglipImageProcessor.from_pretrained(
|
|
image_encoder_path)
|
|
except EnvironmentError:
|
|
self.image_processor = SiglipImageProcessor()
|
|
self.vision_encoder = SiglipVisionModel.from_pretrained(
|
|
image_encoder_path,
|
|
ignore_mismatched_sizes=True
|
|
).to(device, dtype=dtype)
|
|
|
|
self.lpips_model = lpips_model = lpips.LPIPS(net='vgg')
|
|
self.lpips_model = lpips_model.to(device, dtype=torch.float32)
|
|
self.losses = {}
|
|
self.log_every = 100
|
|
self.step = 0
|
|
|
|
def get_siglip_features(self, tensors_0_1):
|
|
dtype = torch.bfloat16
|
|
device = self.vae.device
|
|
# resize to 384x384
|
|
images = F.interpolate(tensors_0_1, size=(384, 384),
|
|
mode='bicubic', align_corners=False)
|
|
|
|
mean = torch.tensor(self.image_processor.image_mean).to(
|
|
device, dtype=dtype
|
|
).detach()
|
|
std = torch.tensor(self.image_processor.image_std).to(
|
|
device, dtype=dtype
|
|
).detach()
|
|
# tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
|
|
clip_image = (
|
|
images - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
|
|
id_embeds = self.vision_encoder(
|
|
clip_image,
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
last_hidden_state = id_embeds['last_hidden_state']
|
|
return last_hidden_state
|
|
|
|
def get_lpips_features(self, tensors_0_1):
|
|
device = self.vae.device
|
|
tensors_n1p1 = (tensors_0_1 * 2) - 1
|
|
def get_lpips_features(img): # -1 to 1
|
|
in0_input = self.lpips_model.scaling_layer(img)
|
|
outs0 = self.lpips_model.net.forward(in0_input)
|
|
|
|
feats0 = {}
|
|
|
|
feats_list = []
|
|
for kk in range(self.lpips_model.L):
|
|
feats0[kk] = lpips.normalize_tensor(outs0[kk])
|
|
feats_list.append(feats0[kk])
|
|
|
|
# 512 in
|
|
# vgg
|
|
# 0 torch.Size([1, 64, 512, 512])
|
|
# 1 torch.Size([1, 128, 256, 256])
|
|
# 2 torch.Size([1, 256, 128, 128])
|
|
# 3 torch.Size([1, 512, 64, 64])
|
|
# 4 torch.Size([1, 512, 32, 32])
|
|
|
|
return feats_list
|
|
|
|
# do lpips
|
|
lpips_feat_list = [x for x in get_lpips_features(
|
|
tensors_n1p1.to(device, dtype=torch.float32))]
|
|
|
|
return lpips_feat_list
|
|
|
|
|
|
def forward(
|
|
self,
|
|
noise,
|
|
noise_pred,
|
|
noisy_latents,
|
|
timesteps,
|
|
batch: DataLoaderBatchDTO,
|
|
scheduler: CustomFlowMatchEulerDiscreteScheduler,
|
|
# lpips_weight=1.0,
|
|
lpips_weight=10.0,
|
|
clip_weight=0.1,
|
|
pixel_weight=0.1
|
|
):
|
|
dtype = torch.bfloat16
|
|
device = self.vae.device
|
|
|
|
# first we step the scheduler from current timestep to the very end for a full denoise
|
|
# bs = noise_pred.shape[0]
|
|
# noise_pred_chunks = torch.chunk(noise_pred, bs)
|
|
# timestep_chunks = torch.chunk(timesteps, bs)
|
|
# noisy_latent_chunks = torch.chunk(noisy_latents, bs)
|
|
# stepped_chunks = []
|
|
# for idx in range(bs):
|
|
# model_output = noise_pred_chunks[idx]
|
|
# timestep = timestep_chunks[idx]
|
|
# scheduler._step_index = None
|
|
# scheduler._init_step_index(timestep)
|
|
# sample = noisy_latent_chunks[idx].to(torch.float32)
|
|
|
|
# sigma = scheduler.sigmas[scheduler.step_index]
|
|
# sigma_next = scheduler.sigmas[-1] # use last sigma for final step
|
|
# prev_sample = sample + (sigma_next - sigma) * model_output
|
|
# stepped_chunks.append(prev_sample)
|
|
|
|
# stepped_latents = torch.cat(stepped_chunks, dim=0)
|
|
|
|
stepped_latents = noise - noise_pred
|
|
|
|
latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype)
|
|
|
|
latents = (
|
|
latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor']
|
|
tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1
|
|
|
|
pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1
|
|
|
|
lpips_feat_list_pred = self.get_lpips_features(pred_images.float())
|
|
|
|
total_loss = 0
|
|
|
|
with torch.no_grad():
|
|
target_img = batch.tensor.to(device, dtype=dtype)
|
|
# go from -1 to 1 to 0 to 1
|
|
target_img = (target_img + 1) / 2
|
|
lpips_feat_list_target = self.get_lpips_features(target_img.float())
|
|
if clip_weight > 0:
|
|
target_clip_output = self.get_siglip_features(target_img).detach()
|
|
if clip_weight > 0:
|
|
pred_clip_output = self.get_siglip_features(pred_images)
|
|
clip_loss = torch.nn.functional.mse_loss(
|
|
pred_clip_output.float(), target_clip_output.float()
|
|
) * clip_weight
|
|
|
|
if 'clip_loss' not in self.losses:
|
|
self.losses['clip_loss'] = clip_loss.item()
|
|
else:
|
|
self.losses['clip_loss'] += clip_loss.item()
|
|
|
|
total_loss += clip_loss
|
|
|
|
skip_lpips_layers = []
|
|
|
|
lpips_loss = 0
|
|
for idx, lpips_feat in enumerate(lpips_feat_list_pred):
|
|
if idx in skip_lpips_layers:
|
|
continue
|
|
lpips_loss += torch.nn.functional.mse_loss(
|
|
lpips_feat.float(), lpips_feat_list_target[idx].float()
|
|
) * lpips_weight
|
|
|
|
if f'lpips_loss_{idx}' not in self.losses:
|
|
self.losses[f'lpips_loss_{idx}'] = lpips_loss.item()
|
|
else:
|
|
self.losses[f'lpips_loss_{idx}'] += lpips_loss.item()
|
|
|
|
total_loss += lpips_loss
|
|
|
|
# mse_loss = torch.nn.functional.mse_loss(
|
|
# stepped_latents.float(), batch.latents.float()
|
|
# ) * pixel_weight
|
|
|
|
# if 'pixel_loss' not in self.losses:
|
|
# self.losses['pixel_loss'] = mse_loss.item()
|
|
# else:
|
|
# self.losses['pixel_loss'] += mse_loss.item()
|
|
|
|
if self.step % self.log_every == 0 and self.step > 0:
|
|
print(f"DFE losses:")
|
|
for key in self.losses:
|
|
self.losses[key] /= self.log_every
|
|
# print in 2.000e-01 format
|
|
print(f" - {key}: {self.losses[key]:.3e}")
|
|
self.losses[key] = 0.0
|
|
|
|
# total_loss += mse_loss
|
|
self.step += 1
|
|
|
|
return total_loss
|
|
|
|
|
|
def load_dfe(model_path) -> DiffusionFeatureExtractor:
|
|
if model_path == "v3":
|
|
dfe = DiffusionFeatureExtractor3()
|
|
dfe.eval()
|
|
return dfe
|
|
if not os.path.exists(model_path):
|
|
raise FileNotFoundError(f"Model file not found: {model_path}")
|
|
# if it ende with safetensors
|
|
if model_path.endswith('.safetensors'):
|
|
state_dict = load_file(model_path)
|
|
else:
|
|
state_dict = torch.load(model_path, weights_only=True)
|
|
if 'model_state_dict' in state_dict:
|
|
state_dict = state_dict['model_state_dict']
|
|
|
|
if 'conv_in.weight' in state_dict:
|
|
dfe = DiffusionFeatureExtractor()
|
|
else:
|
|
dfe = DiffusionFeatureExtractor2()
|
|
|
|
dfe.load_state_dict(state_dict)
|
|
dfe.eval()
|
|
return dfe
|