Files
ai-toolkit/toolkit/models/diffusion_feature_extraction.py
2025-01-21 14:21:34 -07:00

56 lines
1.6 KiB
Python

import torch
import os
from torch import nn
from safetensors.torch import load_file
class DFEBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.act = nn.GELU()
def forward(self, x):
x_in = x
x = self.conv1(x)
x = self.conv2(x)
x = self.act(x)
x = x + x_in
return x
class DiffusionFeatureExtractor(nn.Module):
def __init__(self, in_channels=32):
super().__init__()
num_blocks = 6
self.conv_in = nn.Conv2d(in_channels, 512, 1)
self.conv_pool = nn.Conv2d(512, 512, 3, stride=2, padding=1)
self.blocks = nn.ModuleList([DFEBlock(512) for _ in range(num_blocks)])
self.conv_out = nn.Conv2d(512, 512, 1)
def forward(self, x):
x = self.conv_in(x)
x = self.conv_pool(x)
for block in self.blocks:
x = block(x)
x = self.conv_out(x)
return x
def load_dfe(model_path) -> DiffusionFeatureExtractor:
dfe = DiffusionFeatureExtractor()
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found: {model_path}")
# if it ende with safetensors
if model_path.endswith('.safetensors'):
state_dict = load_file(model_path)
else:
state_dict = torch.load(model_path, weights_only=True)
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
dfe.load_state_dict(state_dict)
dfe.eval()
return dfe