Files
ai-toolkit/jobs/process/models/critic.py

235 lines
8.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import glob
import os
from typing import TYPE_CHECKING, Union
import numpy as np
import torch
import torch.nn as nn
from safetensors.torch import load_file, save_file
from toolkit.losses import get_gradient_penalty
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.train_tools import get_torch_dtype
class MeanReduce(nn.Module):
def __init__(self):
super().__init__()
def forward(self, inputs):
# global mean over spatial dims (keeps channel/batch)
return torch.mean(inputs, dim=(2, 3), keepdim=True)
class SelfAttention2d(nn.Module):
"""
Lightweight self-attention layer (SAGAN-style) that keeps spatial
resolution unchanged. Adds minimal params / compute but improves
long-range modelling helpful for variable-sized inputs.
"""
def __init__(self, in_channels: int):
super().__init__()
self.query = nn.Conv1d(in_channels, in_channels // 8, 1)
self.key = nn.Conv1d(in_channels, in_channels // 8, 1)
self.value = nn.Conv1d(in_channels, in_channels, 1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
B, C, H, W = x.shape
flat = x.view(B, C, H * W) # (B,C,N)
q = self.query(flat).permute(0, 2, 1) # (B,N,C//8)
k = self.key(flat) # (B,C//8,N)
attn = torch.bmm(q, k) # (B,N,N)
attn = attn.softmax(dim=-1) # softmax along last dim
v = self.value(flat) # (B,C,N)
out = torch.bmm(v, attn.permute(0, 2, 1)) # (B,C,N)
out = out.view(B, C, H, W) # restore spatial dims
return self.gamma * out + x # residual
class CriticModel(nn.Module):
def __init__(self, base_channels: int = 64):
super().__init__()
def sn_conv(in_c, out_c, k, s, p):
return nn.utils.spectral_norm(
nn.Conv2d(in_c, out_c, kernel_size=k, stride=s, padding=p)
)
layers = [
# initial down-sample
sn_conv(3, base_channels, 3, 2, 1),
nn.LeakyReLU(0.2, inplace=True),
]
in_c = base_channels
# progressive downsamples ×3 (64→128→256→512)
for _ in range(3):
out_c = min(in_c * 2, 1024)
layers += [
sn_conv(in_c, out_c, 3, 2, 1),
nn.LeakyReLU(0.2, inplace=True),
]
# single attention block after reaching 256 channels
if out_c == 256:
layers += [SelfAttention2d(out_c)]
in_c = out_c
# extra depth (keeps spatial size)
layers += [
sn_conv(in_c, 1024, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True),
# final 1-channel prediction map
sn_conv(1024, 1, 3, 1, 1),
MeanReduce(), # → (B,1,1,1)
nn.Flatten(), # → (B,1)
]
self.main = nn.Sequential(*layers)
def forward(self, inputs):
# force full-precision inside AMP ctx for stability
with torch.cuda.amp.autocast(False):
return self.main(inputs.float())
if TYPE_CHECKING:
from jobs.process.TrainVAEProcess import TrainVAEProcess
from jobs.process.TrainESRGANProcess import TrainESRGANProcess
class Critic:
process: Union['TrainVAEProcess', 'TrainESRGANProcess']
def __init__(
self,
learning_rate=1e-5,
device='cpu',
optimizer='adam',
num_critic_per_gen=1,
dtype='float32',
lambda_gp=10,
start_step=0,
warmup_steps=1000,
process=None,
optimizer_params=None,
):
self.learning_rate = learning_rate
self.device = device
self.optimizer_type = optimizer
self.num_critic_per_gen = num_critic_per_gen
self.dtype = dtype
self.torch_dtype = get_torch_dtype(self.dtype)
self.process = process
self.model = None
self.optimizer = None
self.scheduler = None
self.warmup_steps = warmup_steps
self.start_step = start_step
self.lambda_gp = lambda_gp
if optimizer_params is None:
optimizer_params = {}
self.optimizer_params = optimizer_params
self.print = self.process.print
print(f" Critic config: {self.__dict__}")
def setup(self):
self.model = CriticModel().to(self.device)
self.load_weights()
self.model.train()
self.model.requires_grad_(True)
params = self.model.parameters()
self.optimizer = get_optimizer(
params,
self.optimizer_type,
self.learning_rate,
optimizer_params=self.optimizer_params,
)
self.scheduler = torch.optim.lr_scheduler.ConstantLR(
self.optimizer,
total_iters=self.process.max_steps * self.num_critic_per_gen,
factor=1,
# verbose=False,
)
def load_weights(self):
path_to_load = None
self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}")
files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors"))
if files:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
else:
self.print(" - No checkpoint found, starting from scratch")
if path_to_load:
self.model.load_state_dict(load_file(path_to_load))
def save(self, step=None):
self.process.update_training_metadata()
save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name)
step_num = f"_{str(step).zfill(9)}" if step is not None else ''
save_path = os.path.join(
self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors"
)
save_file(self.model.state_dict(), save_path, save_meta)
self.print(f"Saved critic to {save_path}")
def get_critic_loss(self, vgg_output):
# (caller still passes combined [pred|target] images)
if self.start_step > self.process.step_num:
return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device)
warmup_scaler = 1.0
if self.process.step_num < self.start_step + self.warmup_steps:
warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps
self.model.eval()
self.model.requires_grad_(False)
vgg_pred, _ = torch.chunk(vgg_output.float(), 2, dim=0)
stacked_output = self.model(vgg_pred)
return (-torch.mean(stacked_output)) * warmup_scaler
def step(self, vgg_output):
self.model.train()
self.model.requires_grad_(True)
self.optimizer.zero_grad()
critic_losses = []
inputs = vgg_output.detach().to(self.device, dtype=torch.float32)
vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0)
stacked_output = self.model(inputs).float()
out_pred, out_target = torch.chunk(stacked_output, 2, dim=0)
# hinge loss + gradient penalty
loss_real = torch.relu(1.0 - out_target).mean()
loss_fake = torch.relu(1.0 + out_pred).mean()
gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device)
critic_loss = loss_real + loss_fake + self.lambda_gp * gradient_penalty
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.scheduler.step()
critic_losses.append(critic_loss.item())
return float(np.mean(critic_losses))
def get_lr(self):
if hasattr(self.optimizer, 'get_avg_learning_rate'):
learning_rate = self.optimizer.get_avg_learning_rate()
elif self.optimizer_type.startswith('dadaptation') or \
self.optimizer_type.lower().startswith('prodigy'):
learning_rate = (
self.optimizer.param_groups[0]["d"] *
self.optimizer.param_groups[0]["lr"]
)
else:
learning_rate = self.optimizer.param_groups[0]['lr']
return learning_rate