mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
221 lines
7.0 KiB
Python
221 lines
7.0 KiB
Python
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import transforms
|
|
import sys
|
|
import os
|
|
import cv2
|
|
import random
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
from toolkit.paths import SD_SCRIPTS_ROOT
|
|
import torchvision.transforms.functional
|
|
from toolkit.image_utils import show_img
|
|
|
|
sys.path.append(SD_SCRIPTS_ROOT)
|
|
|
|
from library.model_util import load_vae
|
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
|
from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets, \
|
|
trigger_dataloader_setup_epoch
|
|
from toolkit.config_modules import DatasetConfig
|
|
import argparse
|
|
from tqdm import tqdm
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('dataset_folder', type=str, default='input')
|
|
parser.add_argument('--epochs', type=int, default=1)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
dataset_folder = args.dataset_folder
|
|
resolution = 512
|
|
bucket_tolerance = 64
|
|
batch_size = 1
|
|
|
|
|
|
##
|
|
|
|
dataset_config = DatasetConfig(
|
|
dataset_path=dataset_folder,
|
|
control_path=dataset_folder,
|
|
resolution=resolution,
|
|
# caption_ext='json',
|
|
default_caption='default',
|
|
# clip_image_path='/mnt/Datasets2/regs/yetibear_xl_v14/random_aspect/',
|
|
buckets=True,
|
|
bucket_tolerance=bucket_tolerance,
|
|
# poi='person',
|
|
# shuffle_augmentations=True,
|
|
# augmentations=[
|
|
# {
|
|
# 'method': 'Posterize',
|
|
# 'num_bits': [(0, 4), (0, 4), (0, 4)],
|
|
# 'p': 1.0
|
|
# },
|
|
#
|
|
# ]
|
|
)
|
|
|
|
dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size)
|
|
|
|
def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5):
|
|
if random.random() < p:
|
|
kernel_size = random.randint(min_kernel_size, max_kernel_size)
|
|
# make sure it is odd
|
|
if kernel_size % 2 == 0:
|
|
kernel_size += 1
|
|
img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size)
|
|
return img
|
|
|
|
def quantize(image, palette):
|
|
"""
|
|
Similar to PIL.Image.quantize() in PyTorch. Built to maintain gradient.
|
|
Only works for one image i.e. CHW. Does NOT work for batches.
|
|
ref https://discuss.pytorch.org/t/color-quantization/104528/4
|
|
"""
|
|
|
|
orig_dtype = image.dtype
|
|
|
|
C, H, W = image.shape
|
|
n_colors = palette.shape[0]
|
|
|
|
# Easier to work with list of colors
|
|
flat_img = image.view(C, -1).T # [C, H, W] -> [H*W, C]
|
|
|
|
# Repeat image so that there are n_color number of columns of the same image
|
|
flat_img_per_color = flat_img.unsqueeze(1).expand(-1, n_colors, -1) # [H*W, C] -> [H*W, n_colors, C]
|
|
|
|
# Get euclidean distance between each pixel in each column and the column's respective color
|
|
# i.e. column 1 lists distance of each pixel to color #1 in palette, column 2 to color #2 etc.
|
|
squared_distance = (flat_img_per_color - palette.unsqueeze(0)) ** 2
|
|
euclidean_distance = torch.sqrt(torch.sum(squared_distance, dim=-1) + 1e-8) # [H*W, n_colors, C] -> [H*W, n_colors]
|
|
|
|
# Get the shortest distance (one value per row (H*W) is selected)
|
|
min_distances, min_indices = torch.min(euclidean_distance, dim=-1) # [H*W, n_colors] -> [H*W]
|
|
|
|
# Create a mask for the closest colors
|
|
one_hot_mask = torch.nn.functional.one_hot(min_indices, num_classes=n_colors).float() # [H*W, n_colors]
|
|
|
|
# Multiply the mask with the palette colors to get the quantized image
|
|
quantized = torch.matmul(one_hot_mask, palette) # [H*W, n_colors] @ [n_colors, C] -> [H*W, C]
|
|
|
|
# Reshape it back to the original input format.
|
|
quantized_img = quantized.T.view(C, H, W) # [H*W, C] -> [C, H, W]
|
|
|
|
return quantized_img.to(orig_dtype)
|
|
|
|
|
|
|
|
def color_block_imgs(img, neg1_1=False):
|
|
# expects values 0 - 1
|
|
orig_dtype = img.dtype
|
|
if neg1_1:
|
|
img = img * 0.5 + 0.5
|
|
|
|
img = img * 255
|
|
img = img.clamp(0, 255)
|
|
img = img.to(torch.uint8)
|
|
|
|
img_chunks = torch.chunk(img, img.shape[0], dim=0)
|
|
|
|
posterized_chunks = []
|
|
|
|
for chunk in img_chunks:
|
|
img_size = (chunk.shape[2] + chunk.shape[3]) // 2
|
|
# min kernel size of 1% of image, max 10%
|
|
min_kernel_size = int(img_size * 0.01)
|
|
max_kernel_size = int(img_size * 0.1)
|
|
|
|
# blur first
|
|
chunk = random_blur(chunk, min_kernel_size=min_kernel_size, max_kernel_size=max_kernel_size, p=0.8)
|
|
num_colors = random.randint(1, 16)
|
|
|
|
resize_to = 16
|
|
# chunk = torchvision.transforms.functional.posterize(chunk, num_bits_to_use)
|
|
|
|
# mean_color = [int(x.item()) for x in torch.mean(chunk.float(), dim=(0, 2, 3))]
|
|
|
|
# shrink the image down to num_colors x num_colors
|
|
shrunk = torchvision.transforms.functional.resize(chunk, [resize_to, resize_to])
|
|
|
|
mean_color = [int(x.item()) for x in torch.mean(shrunk.float(), dim=(0, 2, 3))]
|
|
|
|
colors = shrunk.view(3, -1).T
|
|
# remove duplicates
|
|
colors = torch.unique(colors, dim=0)
|
|
colors = colors.numpy()
|
|
colors = colors.tolist()
|
|
|
|
use_colors = [random.choice(colors) for _ in range(num_colors)]
|
|
|
|
pallette = torch.tensor([
|
|
[0, 0, 0],
|
|
mean_color,
|
|
[255, 255, 255],
|
|
] + use_colors, dtype=torch.float32)
|
|
chunk = quantize(chunk.squeeze(0), pallette).unsqueeze(0)
|
|
|
|
# chunk = torchvision.transforms.functional.equalize(chunk)
|
|
# color jitter
|
|
if random.random() < 0.5:
|
|
chunk = torchvision.transforms.functional.adjust_contrast(chunk, random.uniform(1.0, 1.5))
|
|
if random.random() < 0.5:
|
|
chunk = torchvision.transforms.functional.adjust_saturation(chunk, random.uniform(1.0, 2.0))
|
|
# if random.random() < 0.5:
|
|
# chunk = torchvision.transforms.functional.adjust_brightness(chunk, random.uniform(0.5, 1.5))
|
|
chunk = random_blur(chunk, p=0.6)
|
|
posterized_chunks.append(chunk)
|
|
|
|
img = torch.cat(posterized_chunks, dim=0)
|
|
img = img.to(orig_dtype)
|
|
img = img / 255
|
|
|
|
if neg1_1:
|
|
img = img * 2 - 1
|
|
return img
|
|
|
|
|
|
# run through an epoch ang check sizes
|
|
dataloader_iterator = iter(dataloader)
|
|
for epoch in range(args.epochs):
|
|
for batch in tqdm(dataloader):
|
|
batch: 'DataLoaderBatchDTO'
|
|
img_batch = batch.tensor
|
|
|
|
img_batch = color_block_imgs(img_batch, neg1_1=True)
|
|
|
|
chunks = torch.chunk(img_batch, batch_size, dim=0)
|
|
# put them so they are size by side
|
|
big_img = torch.cat(chunks, dim=3)
|
|
big_img = big_img.squeeze(0)
|
|
|
|
control_chunks = torch.chunk(batch.control_tensor, batch_size, dim=0)
|
|
big_control_img = torch.cat(control_chunks, dim=3)
|
|
big_control_img = big_control_img.squeeze(0) * 2 - 1
|
|
|
|
big_img = torch.cat([big_img, big_control_img], dim=2)
|
|
|
|
min_val = big_img.min()
|
|
max_val = big_img.max()
|
|
|
|
big_img = (big_img / 2 + 0.5).clamp(0, 1)
|
|
|
|
# convert to image
|
|
img = transforms.ToPILImage()(big_img)
|
|
|
|
show_img(img)
|
|
|
|
time.sleep(1.0)
|
|
# if not last epoch
|
|
if epoch < args.epochs - 1:
|
|
trigger_dataloader_setup_epoch(dataloader)
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
print('done')
|