mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
829 lines
34 KiB
Python
829 lines
34 KiB
Python
import sys
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import weakref
|
|
from typing import Union, TYPE_CHECKING, Optional
|
|
from collections import OrderedDict
|
|
|
|
from diffusers import Transformer2DModel, FluxTransformer2DModel
|
|
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
|
|
from toolkit.models.pixtral_vision import PixtralVisionEncoder, PixtralVisionImagePreprocessor, VisionLanguageAdapter
|
|
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
import traceback
|
|
from toolkit.config_modules import AdapterConfig
|
|
from toolkit.paths import REPOS_ROOT
|
|
sys.path.append(REPOS_ROOT)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.stable_diffusion_model import StableDiffusion
|
|
from toolkit.custom_adapter import CustomAdapter
|
|
|
|
|
|
# matches distribution of randn
|
|
class Norm(nn.Module):
|
|
def __init__(self, target_mean=0.0, target_std=1.0, eps=1e-6):
|
|
super(Norm, self).__init__()
|
|
self.target_mean = target_mean
|
|
self.target_std = target_std
|
|
self.eps = eps
|
|
|
|
def forward(self, x):
|
|
dims = tuple(range(1, x.dim()))
|
|
mean = x.mean(dim=dims, keepdim=True)
|
|
std = x.std(dim=dims, keepdim=True)
|
|
|
|
# Normalize
|
|
return self.target_std * (x - mean) / (std + self.eps) + self.target_mean
|
|
|
|
|
|
norm_layer = Norm()
|
|
|
|
class SparseAutoencoder(nn.Module):
|
|
def __init__(self, input_dim, hidden_dim, output_dim):
|
|
super(SparseAutoencoder, self).__init__()
|
|
self.encoder = nn.Sequential(
|
|
nn.Linear(input_dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim, output_dim),
|
|
)
|
|
self.norm = Norm()
|
|
self.decoder = nn.Sequential(
|
|
nn.Linear(output_dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim, input_dim),
|
|
)
|
|
self.last_run = None
|
|
|
|
def forward(self, x):
|
|
self.last_run = {
|
|
"input": x
|
|
}
|
|
x = self.encoder(x)
|
|
x = self.norm(x)
|
|
self.last_run["sparse"] = x
|
|
x = self.decoder(x)
|
|
x = self.norm(x)
|
|
self.last_run["output"] = x
|
|
return x
|
|
|
|
|
|
class MLPR(nn.Module): # MLP with reshaping
|
|
def __init__(
|
|
self,
|
|
in_dim,
|
|
in_channels,
|
|
out_dim,
|
|
out_channels,
|
|
use_residual=True
|
|
):
|
|
super().__init__()
|
|
if use_residual:
|
|
assert in_dim == out_dim
|
|
# dont normalize if using conv
|
|
self.layer_norm = nn.LayerNorm(in_dim)
|
|
|
|
self.fc1 = nn.Linear(in_dim, out_dim)
|
|
self.act_fn = nn.GELU()
|
|
self.conv1 = nn.Conv1d(in_channels, out_channels, 1)
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
x = self.layer_norm(x)
|
|
x = self.fc1(x)
|
|
x = self.act_fn(x)
|
|
x = self.conv1(x)
|
|
return x
|
|
|
|
class AttnProcessor2_0(torch.nn.Module):
|
|
r"""
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=None,
|
|
cross_attention_dim=None,
|
|
):
|
|
super().__init__()
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
):
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
# scaled_dot_product_attention expects attention_mask shape to be
|
|
# (batch, heads, source_length, target_length)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
class VisionDirectAdapterAttnProcessor(nn.Module):
|
|
r"""
|
|
Attention processor for Custom TE for PyTorch 2.0.
|
|
Args:
|
|
hidden_size (`int`):
|
|
The hidden size of the attention layer.
|
|
cross_attention_dim (`int`):
|
|
The number of channels in the `encoder_hidden_states`.
|
|
scale (`float`, defaults to 1.0):
|
|
the weight scale of image prompt.
|
|
adapter
|
|
"""
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
|
|
adapter_hidden_size=None, has_bias=False, **kwargs):
|
|
super().__init__()
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.adapter_hidden_size = adapter_hidden_size
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.scale = scale
|
|
|
|
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
|
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
|
|
|
@property
|
|
def is_active(self):
|
|
return self.adapter_ref().is_active
|
|
# return False
|
|
|
|
@property
|
|
def unconditional_embeds(self):
|
|
return self.adapter_ref().adapter_ref().unconditional_embeds
|
|
|
|
@property
|
|
def conditional_embeds(self):
|
|
return self.adapter_ref().adapter_ref().conditional_embeds
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
):
|
|
is_active = self.adapter_ref().is_active
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
# scaled_dot_product_attention expects attention_mask shape to be
|
|
# (batch, heads, source_length, target_length)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
# will be none if disabled
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# only use one TE or the other. If our adapter is active only use ours
|
|
if self.is_active and self.conditional_embeds is not None:
|
|
try:
|
|
|
|
adapter_hidden_states = self.conditional_embeds
|
|
if adapter_hidden_states.shape[0] == batch_size // 2:
|
|
adapter_hidden_states = torch.cat([
|
|
self.unconditional_embeds,
|
|
adapter_hidden_states
|
|
], dim=0)
|
|
# if it is image embeds, we need to add a 1 dim at inx 1
|
|
if len(adapter_hidden_states.shape) == 2:
|
|
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
|
|
# conditional_batch_size = adapter_hidden_states.shape[0]
|
|
# conditional_query = query
|
|
|
|
# for ip-adapter
|
|
vd_key = self.to_k_adapter(adapter_hidden_states)
|
|
vd_value = self.to_v_adapter(adapter_hidden_states)
|
|
|
|
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
vd_hidden_states = F.scaled_dot_product_attention(
|
|
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
vd_hidden_states = vd_hidden_states.to(query.dtype)
|
|
|
|
hidden_states = hidden_states + self.scale * vd_hidden_states
|
|
except Exception as e:
|
|
print("Error in VisionDirectAdapterAttnProcessor")
|
|
# print shapes of all tensors
|
|
print(f"hidden_states: {hidden_states.shape}")
|
|
print(f"adapter_hidden_states: {adapter_hidden_states.shape}")
|
|
print(f"vd_key: {vd_key.shape}")
|
|
print(f"vd_value: {vd_value.shape}")
|
|
print(f"vd_hidden_states: {vd_hidden_states.shape}")
|
|
print(f"query: {query.shape}")
|
|
print(f"key: {key.shape}")
|
|
print(f"value: {value.shape}")
|
|
print(f"inner_dim: {inner_dim}")
|
|
print(f"head_dim: {head_dim}")
|
|
print(f"batch_size: {batch_size}")
|
|
traceback.print_exc()
|
|
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CustomFluxVDAttnProcessor2_0(torch.nn.Module):
|
|
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
|
|
adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs):
|
|
super().__init__()
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.adapter_hidden_size = adapter_hidden_size
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.scale = scale
|
|
self.block_idx = block_idx
|
|
|
|
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
|
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
|
|
|
@property
|
|
def is_active(self):
|
|
return self.adapter_ref().is_active
|
|
# return False
|
|
|
|
@property
|
|
def unconditional_embeds(self):
|
|
return self.adapter_ref().adapter_ref().unconditional_embeds
|
|
|
|
@property
|
|
def conditional_embeds(self):
|
|
return self.adapter_ref().adapter_ref().conditional_embeds
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
|
|
# `sample` projections.
|
|
query = attn.to_q(hidden_states)
|
|
key = attn.to_k(hidden_states)
|
|
value = attn.to_v(hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
|
if encoder_hidden_states is not None:
|
|
# `context` projections.
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
|
batch_size, -1, attn.heads, head_dim
|
|
).transpose(1, 2)
|
|
|
|
if attn.norm_added_q is not None:
|
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
|
if attn.norm_added_k is not None:
|
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
|
|
|
# attention
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
|
|
|
if image_rotary_emb is not None:
|
|
from diffusers.models.embeddings import apply_rotary_emb
|
|
|
|
query = apply_rotary_emb(query, image_rotary_emb)
|
|
key = apply_rotary_emb(key, image_rotary_emb)
|
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# begin ip adapter
|
|
if self.is_active and self.conditional_embeds is not None:
|
|
adapter_hidden_states = self.conditional_embeds
|
|
block_scaler = self.adapter_ref().block_scaler
|
|
if block_scaler is not None:
|
|
# add 1 to block scaler so we can decay its weight to 1.0
|
|
block_scaler = block_scaler[self.block_idx] + 1.0
|
|
|
|
if adapter_hidden_states.shape[0] < batch_size:
|
|
adapter_hidden_states = torch.cat([
|
|
self.unconditional_embeds,
|
|
adapter_hidden_states
|
|
], dim=0)
|
|
# if it is image embeds, we need to add a 1 dim at inx 1
|
|
if len(adapter_hidden_states.shape) == 2:
|
|
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
|
|
# conditional_batch_size = adapter_hidden_states.shape[0]
|
|
# conditional_query = query
|
|
|
|
# for ip-adapter
|
|
vd_key = self.to_k_adapter(adapter_hidden_states)
|
|
vd_value = self.to_v_adapter(adapter_hidden_states)
|
|
|
|
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
vd_hidden_states = F.scaled_dot_product_attention(
|
|
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
vd_hidden_states = vd_hidden_states.to(query.dtype)
|
|
|
|
# scale to block scaler
|
|
if block_scaler is not None:
|
|
orig_dtype = vd_hidden_states.dtype
|
|
if block_scaler.dtype != vd_hidden_states.dtype:
|
|
vd_hidden_states = vd_hidden_states.to(block_scaler.dtype)
|
|
vd_hidden_states = vd_hidden_states * block_scaler
|
|
if block_scaler.dtype != orig_dtype:
|
|
vd_hidden_states = vd_hidden_states.to(orig_dtype)
|
|
|
|
hidden_states = hidden_states + self.scale * vd_hidden_states
|
|
|
|
if encoder_hidden_states is not None:
|
|
encoder_hidden_states, hidden_states = (
|
|
hidden_states[:, : encoder_hidden_states.shape[1]],
|
|
hidden_states[:, encoder_hidden_states.shape[1] :],
|
|
)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
|
|
|
return hidden_states, encoder_hidden_states
|
|
else:
|
|
return hidden_states
|
|
|
|
class VisionDirectAdapter(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
adapter: 'CustomAdapter',
|
|
sd: 'StableDiffusion',
|
|
vision_model: Union[CLIPVisionModelWithProjection],
|
|
):
|
|
super(VisionDirectAdapter, self).__init__()
|
|
is_pixart = sd.is_pixart
|
|
is_flux = sd.is_flux
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
|
self.sd_ref: weakref.ref = weakref.ref(sd)
|
|
self.config: AdapterConfig = adapter.config
|
|
self.vision_model_ref: weakref.ref = weakref.ref(vision_model)
|
|
self.resampler = None
|
|
is_pixtral = self.config.image_encoder_arch == "pixtral"
|
|
|
|
if adapter.config.clip_layer == "image_embeds":
|
|
if isinstance(vision_model, SiglipVisionModel):
|
|
self.token_size = vision_model.config.hidden_size
|
|
else:
|
|
self.token_size = vision_model.config.projection_dim
|
|
else:
|
|
self.token_size = vision_model.config.hidden_size
|
|
|
|
self.mid_size = self.token_size
|
|
|
|
if self.config.conv_pooling and self.config.conv_pooling_stacks > 1:
|
|
self.mid_size = self.mid_size * self.config.conv_pooling_stacks
|
|
|
|
# if pixtral, use cross attn dim for more sparse representation if only doing double transformers
|
|
if is_pixtral and self.config.flux_only_double:
|
|
if is_flux:
|
|
hidden_size = 3072
|
|
else:
|
|
hidden_size = sd.unet.config['cross_attention_dim']
|
|
self.mid_size = hidden_size
|
|
|
|
# init adapter modules
|
|
attn_procs = {}
|
|
unet_sd = sd.unet.state_dict()
|
|
|
|
attn_processor_keys = []
|
|
if is_pixart:
|
|
transformer: Transformer2DModel = sd.unet
|
|
for i, module in transformer.transformer_blocks.named_children():
|
|
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
|
|
|
|
# cross attention
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
|
|
|
|
elif is_flux:
|
|
transformer: FluxTransformer2DModel = sd.unet
|
|
for i, module in transformer.transformer_blocks.named_children():
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn")
|
|
|
|
if not self.config.flux_only_double:
|
|
# single transformer blocks do not have cross attn, but we will do them anyway
|
|
for i, module in transformer.single_transformer_blocks.named_children():
|
|
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
|
|
else:
|
|
attn_processor_keys = list(sd.unet.attn_processors.keys())
|
|
|
|
current_idx = 0
|
|
|
|
for name in attn_processor_keys:
|
|
if is_flux:
|
|
cross_attention_dim = None
|
|
else:
|
|
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
|
|
if name.startswith("mid_block"):
|
|
hidden_size = sd.unet.config['block_out_channels'][-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = sd.unet.config['block_out_channels'][block_id]
|
|
elif name.startswith("transformer") or name.startswith("single_transformer"):
|
|
if is_flux:
|
|
hidden_size = 3072
|
|
else:
|
|
hidden_size = sd.unet.config['cross_attention_dim']
|
|
else:
|
|
# they didnt have this, but would lead to undefined below
|
|
raise ValueError(f"unknown attn processor name: {name}")
|
|
if cross_attention_dim is None and not is_flux:
|
|
attn_procs[name] = AttnProcessor2_0()
|
|
else:
|
|
layer_name = name.split(".processor")[0]
|
|
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
|
|
# is quantized
|
|
|
|
to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01
|
|
to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01
|
|
to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype)
|
|
to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype)
|
|
else:
|
|
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
|
|
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
|
|
|
|
# add zero padding to the adapter
|
|
if to_k_adapter.shape[1] < self.mid_size:
|
|
to_k_adapter = torch.cat([
|
|
to_k_adapter,
|
|
torch.randn(to_k_adapter.shape[0], self.mid_size - to_k_adapter.shape[1]).to(
|
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
|
|
],
|
|
dim=1
|
|
)
|
|
to_v_adapter = torch.cat([
|
|
to_v_adapter,
|
|
torch.randn(to_v_adapter.shape[0], self.mid_size - to_v_adapter.shape[1]).to(
|
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
|
|
],
|
|
dim=1
|
|
)
|
|
elif to_k_adapter.shape[1] > self.mid_size:
|
|
to_k_adapter = to_k_adapter[:, :self.mid_size]
|
|
to_v_adapter = to_v_adapter[:, :self.mid_size]
|
|
# if is_pixart:
|
|
# to_k_bias = to_k_bias[:self.mid_size]
|
|
# to_v_bias = to_v_bias[:self.mid_size]
|
|
else:
|
|
to_k_adapter = to_k_adapter
|
|
to_v_adapter = to_v_adapter
|
|
# if is_pixart:
|
|
# to_k_bias = to_k_bias
|
|
# to_v_bias = to_v_bias
|
|
|
|
weights = {
|
|
"to_k_adapter.weight": to_k_adapter * 0.01,
|
|
"to_v_adapter.weight": to_v_adapter * 0.01,
|
|
}
|
|
# if is_pixart:
|
|
# weights["to_k_adapter.bias"] = to_k_bias
|
|
# weights["to_v_adapter.bias"] = to_v_bias\
|
|
|
|
if is_flux:
|
|
attn_procs[name] = CustomFluxVDAttnProcessor2_0(
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
scale=1.0,
|
|
adapter=self,
|
|
adapter_hidden_size=self.mid_size,
|
|
has_bias=False,
|
|
block_idx=current_idx
|
|
)
|
|
else:
|
|
attn_procs[name] = VisionDirectAdapterAttnProcessor(
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
scale=1.0,
|
|
adapter=self,
|
|
adapter_hidden_size=self.mid_size,
|
|
has_bias=False,
|
|
)
|
|
current_idx += 1
|
|
attn_procs[name].load_state_dict(weights)
|
|
|
|
if self.sd_ref().is_pixart:
|
|
# we have to set them ourselves
|
|
transformer: Transformer2DModel = sd.unet
|
|
for i, module in transformer.transformer_blocks.named_children():
|
|
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
|
|
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
|
|
self.adapter_modules = torch.nn.ModuleList([
|
|
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
|
|
] + [
|
|
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
|
|
])
|
|
elif self.sd_ref().is_flux:
|
|
# we have to set them ourselves
|
|
transformer: FluxTransformer2DModel = sd.unet
|
|
for i, module in transformer.transformer_blocks.named_children():
|
|
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]
|
|
|
|
if not self.config.flux_only_double:
|
|
# do single blocks too even though they dont have cross attn
|
|
for i, module in transformer.single_transformer_blocks.named_children():
|
|
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]
|
|
|
|
if not self.config.flux_only_double:
|
|
self.adapter_modules = torch.nn.ModuleList(
|
|
[
|
|
transformer.transformer_blocks[i].attn.processor for i in
|
|
range(len(transformer.transformer_blocks))
|
|
] + [
|
|
transformer.single_transformer_blocks[i].attn.processor for i in
|
|
range(len(transformer.single_transformer_blocks))
|
|
]
|
|
)
|
|
else:
|
|
self.adapter_modules = torch.nn.ModuleList(
|
|
[
|
|
transformer.transformer_blocks[i].attn.processor for i in
|
|
range(len(transformer.transformer_blocks))
|
|
]
|
|
)
|
|
else:
|
|
sd.unet.set_attn_processor(attn_procs)
|
|
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
|
|
|
num_modules = len(self.adapter_modules)
|
|
if self.config.train_scaler:
|
|
self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to(
|
|
dtype=torch.float32,
|
|
device=self.sd_ref().device_torch
|
|
))
|
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
|
|
self.block_scaler.requires_grad = True
|
|
else:
|
|
self.block_scaler = None
|
|
|
|
self.pool = None
|
|
|
|
if self.config.num_tokens is not None:
|
|
# image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict()
|
|
# max_seq_len = CLIP tokens + CLS token
|
|
# max_seq_len = 257
|
|
# if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
|
|
# # clip
|
|
# max_seq_len = int(
|
|
# image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
|
|
# self.resampler = MLPR(
|
|
# in_dim=self.token_size,
|
|
# in_channels=max_seq_len,
|
|
# out_dim=self.mid_size,
|
|
# out_channels=self.config.num_tokens,
|
|
# )
|
|
vision_config = self.adapter_ref().vision_encoder.config
|
|
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1)
|
|
# siglip doesnt add 1
|
|
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2)
|
|
self.pool = nn.Sequential(
|
|
nn.Conv1d(sequence_length, self.config.num_tokens, 1, bias=False),
|
|
Norm(),
|
|
)
|
|
|
|
elif self.config.image_encoder_arch == "pixtral":
|
|
self.resampler = VisionLanguageAdapter(
|
|
in_dim=self.token_size,
|
|
out_dim=self.mid_size,
|
|
)
|
|
|
|
self.sparse_autoencoder = None
|
|
if self.config.conv_pooling:
|
|
vision_config = self.adapter_ref().vision_encoder.config
|
|
# sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2 + 1)
|
|
# siglip doesnt add 1
|
|
sequence_length = int((vision_config.image_size / vision_config.patch_size) ** 2)
|
|
self.pool = nn.Sequential(
|
|
nn.Conv1d(sequence_length, self.config.conv_pooling_stacks, 1, bias=False),
|
|
Norm(),
|
|
)
|
|
if self.config.sparse_autoencoder_dim is not None:
|
|
hidden_dim = self.token_size * 2
|
|
if hidden_dim > self.config.sparse_autoencoder_dim:
|
|
hidden_dim = self.config.sparse_autoencoder_dim
|
|
self.sparse_autoencoder = SparseAutoencoder(
|
|
input_dim=self.token_size,
|
|
hidden_dim=hidden_dim,
|
|
output_dim=self.config.sparse_autoencoder_dim
|
|
)
|
|
|
|
if self.config.clip_layer == "image_embeds":
|
|
self.proj = nn.Linear(self.token_size, self.token_size)
|
|
|
|
def state_dict(self, destination=None, prefix='', keep_vars=False):
|
|
if self.config.train_scaler:
|
|
# only return the block scaler
|
|
if destination is None:
|
|
destination = OrderedDict()
|
|
destination[prefix + 'block_scaler'] = self.block_scaler
|
|
return destination
|
|
return super().state_dict(destination, prefix, keep_vars)
|
|
|
|
# make a getter to see if is active
|
|
@property
|
|
def is_active(self):
|
|
return self.adapter_ref().is_active
|
|
|
|
def forward(self, input):
|
|
# block scaler keeps moving dtypes. make sure it is float32 here
|
|
# todo remove this when we have a real solution
|
|
|
|
if self.block_scaler is not None and self.block_scaler.dtype != torch.float32:
|
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
|
|
# if doing image_embeds, normalize here
|
|
if self.config.clip_layer == "image_embeds":
|
|
input = norm_layer(input)
|
|
input = self.proj(input)
|
|
if self.resampler is not None:
|
|
input = self.resampler(input)
|
|
if self.pool is not None:
|
|
input = self.pool(input)
|
|
if self.config.conv_pooling_stacks > 1:
|
|
input = torch.cat(torch.chunk(input, self.config.conv_pooling_stacks, dim=1), dim=2)
|
|
if self.sparse_autoencoder is not None:
|
|
input = self.sparse_autoencoder(input)
|
|
return input
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
if self.block_scaler is not None:
|
|
if self.block_scaler.dtype != torch.float32:
|
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32)
|
|
return self
|
|
|
|
def post_weight_update(self):
|
|
# force block scaler to be mean of 1
|
|
pass
|