mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
491 lines
22 KiB
Python
491 lines
22 KiB
Python
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
|
from collections import OrderedDict
|
|
import os
|
|
import PIL
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torchvision import transforms as T
|
|
|
|
from safetensors import safe_open
|
|
from huggingface_hub.utils import validate_hf_hub_args
|
|
from transformers import CLIPImageProcessor, CLIPTokenizer
|
|
from diffusers import StableDiffusionXLPipeline
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.utils import (
|
|
_get_model_file,
|
|
is_transformers_available,
|
|
logging,
|
|
)
|
|
|
|
from .photomaker import PhotoMakerIDEncoder
|
|
|
|
PipelineImageInput = Union[
|
|
PIL.Image.Image,
|
|
torch.FloatTensor,
|
|
List[PIL.Image.Image],
|
|
List[torch.FloatTensor],
|
|
]
|
|
|
|
|
|
class PhotoMakerStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
@validate_hf_hub_args
|
|
def load_photomaker_adapter(
|
|
self,
|
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
|
weight_name: str,
|
|
subfolder: str = '',
|
|
trigger_word: str = 'img',
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Parameters:
|
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
|
Can be either:
|
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
|
the Hub.
|
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
|
with [`ModelMixin.save_pretrained`].
|
|
- A [torch state
|
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
|
|
|
weight_name (`str`):
|
|
The weight name NOT the path to the weight.
|
|
|
|
subfolder (`str`, defaults to `""`):
|
|
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
|
|
|
trigger_word (`str`, *optional*, defaults to `"img"`):
|
|
The trigger word is used to identify the position of class word in the text prompt,
|
|
and it is recommended not to set it as a common word.
|
|
This trigger word must be placed after the class word when used, otherwise, it will affect the performance of the personalized generation.
|
|
"""
|
|
|
|
# Load the main state dict first.
|
|
cache_dir = kwargs.pop("cache_dir", None)
|
|
force_download = kwargs.pop("force_download", False)
|
|
resume_download = kwargs.pop("resume_download", False)
|
|
proxies = kwargs.pop("proxies", None)
|
|
local_files_only = kwargs.pop("local_files_only", None)
|
|
token = kwargs.pop("token", None)
|
|
revision = kwargs.pop("revision", None)
|
|
|
|
user_agent = {
|
|
"file_type": "attn_procs_weights",
|
|
"framework": "pytorch",
|
|
}
|
|
|
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
|
model_file = _get_model_file(
|
|
pretrained_model_name_or_path_or_dict,
|
|
weights_name=weight_name,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
resume_download=resume_download,
|
|
proxies=proxies,
|
|
local_files_only=local_files_only,
|
|
token=token,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
user_agent=user_agent,
|
|
)
|
|
if weight_name.endswith(".safetensors"):
|
|
state_dict = {"id_encoder": {}, "lora_weights": {}}
|
|
with safe_open(model_file, framework="pt", device="cpu") as f:
|
|
for key in f.keys():
|
|
if key.startswith("id_encoder."):
|
|
state_dict["id_encoder"][key.replace("id_encoder.", "")] = f.get_tensor(key)
|
|
elif key.startswith("lora_weights."):
|
|
state_dict["lora_weights"][key.replace("lora_weights.", "")] = f.get_tensor(key)
|
|
else:
|
|
state_dict = torch.load(model_file, map_location="cpu")
|
|
else:
|
|
state_dict = pretrained_model_name_or_path_or_dict
|
|
|
|
keys = list(state_dict.keys())
|
|
if keys != ["id_encoder", "lora_weights"]:
|
|
raise ValueError("Required keys are (`id_encoder` and `lora_weights`) missing from the state dict.")
|
|
|
|
self.trigger_word = trigger_word
|
|
# load finetuned CLIP image encoder and fuse module here if it has not been registered to the pipeline yet
|
|
print(f"Loading PhotoMaker components [1] id_encoder from [{pretrained_model_name_or_path_or_dict}]...")
|
|
id_encoder = PhotoMakerIDEncoder()
|
|
id_encoder.load_state_dict(state_dict["id_encoder"], strict=True)
|
|
id_encoder = id_encoder.to(self.device, dtype=self.unet.dtype)
|
|
self.id_encoder = id_encoder
|
|
self.id_image_processor = CLIPImageProcessor()
|
|
|
|
# load lora into models
|
|
print(f"Loading PhotoMaker components [2] lora_weights from [{pretrained_model_name_or_path_or_dict}]")
|
|
self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker")
|
|
|
|
# Add trigger word token
|
|
if self.tokenizer is not None:
|
|
self.tokenizer.add_tokens([self.trigger_word], special_tokens=True)
|
|
|
|
self.tokenizer_2.add_tokens([self.trigger_word], special_tokens=True)
|
|
|
|
def encode_prompt_with_trigger_word(
|
|
self,
|
|
prompt: str,
|
|
prompt_2: Optional[str] = None,
|
|
num_id_images: int = 1,
|
|
device: Optional[torch.device] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
class_tokens_mask: Optional[torch.LongTensor] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
# Find the token id of the trigger word
|
|
image_token_id = self.tokenizer_2.convert_tokens_to_ids(self.trigger_word)
|
|
|
|
# Define tokenizers and text encoders
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
input_ids = tokenizer.encode(prompt) # TODO: batch encode
|
|
clean_index = 0
|
|
clean_input_ids = []
|
|
class_token_index = []
|
|
# Find out the corrresponding class word token based on the newly added trigger word token
|
|
for i, token_id in enumerate(input_ids):
|
|
if token_id == image_token_id:
|
|
class_token_index.append(clean_index - 1)
|
|
else:
|
|
clean_input_ids.append(token_id)
|
|
clean_index += 1
|
|
|
|
if len(class_token_index) != 1:
|
|
raise ValueError(
|
|
f"PhotoMaker currently does not support multiple trigger words in a single prompt.\
|
|
Trigger word: {self.trigger_word}, Prompt: {prompt}."
|
|
)
|
|
class_token_index = class_token_index[0]
|
|
|
|
# Expand the class word token and corresponding mask
|
|
class_token = clean_input_ids[class_token_index]
|
|
clean_input_ids = clean_input_ids[:class_token_index] + [class_token] * num_id_images + \
|
|
clean_input_ids[class_token_index + 1:]
|
|
|
|
# Truncation or padding
|
|
max_len = tokenizer.model_max_length
|
|
if len(clean_input_ids) > max_len:
|
|
clean_input_ids = clean_input_ids[:max_len]
|
|
else:
|
|
clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * (
|
|
max_len - len(clean_input_ids)
|
|
)
|
|
|
|
class_tokens_mask = [True if class_token_index <= i < class_token_index + num_id_images else False \
|
|
for i in range(len(clean_input_ids))]
|
|
|
|
clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long).unsqueeze(0)
|
|
class_tokens_mask = torch.tensor(class_tokens_mask, dtype=torch.bool).unsqueeze(0)
|
|
|
|
prompt_embeds = text_encoder(
|
|
clean_input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
class_tokens_mask = class_tokens_mask.to(device=device) # TODO: ignoring two-prompt case
|
|
|
|
return prompt_embeds, pooled_prompt_embeds, class_tokens_mask
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
# Added parameters (for PhotoMaker)
|
|
input_id_images: PipelineImageInput = None,
|
|
start_merge_step: int = 0, # TODO: change to `style_strength_ratio` in the future
|
|
class_tokens_mask: Optional[torch.LongTensor] = None,
|
|
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
Only the parameters introduced by PhotoMaker are discussed here.
|
|
For explanations of the previous parameters in StableDiffusionXLPipeline, please refer to https://github.com/huggingface/diffusers/blob/v0.25.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py
|
|
|
|
Args:
|
|
input_id_images (`PipelineImageInput`, *optional*):
|
|
Input ID Image to work with PhotoMaker.
|
|
class_tokens_mask (`torch.LongTensor`, *optional*):
|
|
Pre-generated class token. When the `prompt_embeds` parameter is provided in advance, it is necessary to prepare the `class_tokens_mask` beforehand for marking out the position of class word.
|
|
prompt_embeds_text_only (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
pooled_prompt_embeds_text_only (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
# 0. Default height and width to unet
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
)
|
|
#
|
|
if prompt_embeds is not None and class_tokens_mask is None:
|
|
raise ValueError(
|
|
"If `prompt_embeds` are provided, `class_tokens_mask` also have to be passed. Make sure to generate `class_tokens_mask` from the same tokenizer that was used to generate `prompt_embeds`."
|
|
)
|
|
# check the input id images
|
|
if input_id_images is None:
|
|
raise ValueError(
|
|
"Provide `input_id_images`. Cannot leave `input_id_images` undefined for PhotoMaker pipeline."
|
|
)
|
|
if not isinstance(input_id_images, list):
|
|
input_id_images = [input_id_images]
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
assert do_classifier_free_guidance
|
|
|
|
# 3. Encode input prompt
|
|
num_id_images = len(input_id_images)
|
|
|
|
(
|
|
prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
class_tokens_mask,
|
|
) = self.encode_prompt_with_trigger_word(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_id_images=num_id_images,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
class_tokens_mask=class_tokens_mask,
|
|
)
|
|
|
|
# 4. Encode input prompt without the trigger word for delayed conditioning
|
|
prompt_text_only = prompt.replace(" " + self.trigger_word, "") # sensitive to white space
|
|
(
|
|
prompt_embeds_text_only,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds_text_only, # TODO: replace the pooled_prompt_embeds with text only prompt
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt_text_only,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds_text_only,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds_text_only,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
)
|
|
|
|
# 5. Prepare the input ID images
|
|
dtype = next(self.id_encoder.parameters()).dtype
|
|
if not isinstance(input_id_images[0], torch.Tensor):
|
|
id_pixel_values = self.id_image_processor(input_id_images, return_tensors="pt").pixel_values
|
|
|
|
id_pixel_values = id_pixel_values.unsqueeze(0).to(device=device, dtype=dtype) # TODO: multiple prompts
|
|
|
|
# 6. Get the update text embedding with the stacked ID embedding
|
|
prompt_embeds = self.id_encoder(id_pixel_values, prompt_embeds, class_tokens_mask)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
|
|
# 7. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 8. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 10. Prepare added time ids & embeddings
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
# 11. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
latent_model_input = (
|
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
if i <= start_merge_step:
|
|
current_prompt_embeds = torch.cat(
|
|
[negative_prompt_embeds, prompt_embeds_text_only], dim=0
|
|
)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0)
|
|
else:
|
|
current_prompt_embeds = torch.cat(
|
|
[negative_prompt_embeds, prompt_embeds], dim=0
|
|
)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
|
# predict the noise residual
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=current_prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
else:
|
|
image = latents
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
# apply watermark if available
|
|
# if self.watermark is not None:
|
|
# image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |