mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
648 lines
23 KiB
Python
648 lines
23 KiB
Python
"""
|
|
This code was heavily inspired by the work of Lodestone-Rock, pretty much all credit goes
|
|
to them. The original code can be found here:
|
|
https://github.com/lodestone-rock/RamTorch/blob/main/ramtorch/modules/linear.py
|
|
|
|
I simply modified it to work with a memory management model and with AI Toolkit's models
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from typing import TYPE_CHECKING, Optional, Tuple
|
|
from torch.overrides import has_torch_function_unary # (ADD) torchao detection
|
|
|
|
if TYPE_CHECKING:
|
|
from .manager import MemoryManager
|
|
|
|
# --- Per-device global state registry ---
|
|
_DEVICE_STATE = {}
|
|
|
|
|
|
def _get_device_state(device: torch.device):
|
|
"""Get or initialize per-device state."""
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
|
|
# CPU path needs no CUDA state
|
|
if device.type != "cuda":
|
|
if device not in _DEVICE_STATE:
|
|
_DEVICE_STATE[device] = {}
|
|
return _DEVICE_STATE[device]
|
|
|
|
if device not in _DEVICE_STATE:
|
|
with torch.cuda.device(device):
|
|
_DEVICE_STATE[device] = {
|
|
# streams & events
|
|
"transfer_stream": torch.cuda.Stream(device=device),
|
|
"transfer_grad_stream": torch.cuda.Stream(device=device),
|
|
"transfer_forward_finished_event": torch.cuda.Event(),
|
|
"compute_forward_start_event": torch.cuda.Event(),
|
|
"transfer_backward_finished_event": torch.cuda.Event(),
|
|
"transfer_weight_backward_finished_event": torch.cuda.Event(),
|
|
"compute_backward_start_event": torch.cuda.Event(),
|
|
"compute_backward_finished_event": torch.cuda.Event(),
|
|
# ping-pong buffers
|
|
"w_buffers": [None, None],
|
|
"b_buffers": [None, None],
|
|
"w_bwd_buffers": [None, None],
|
|
# device-side staging for grads to be sent to CPU
|
|
"w_grad_buffers": [None, None],
|
|
"b_grad_buffers": [None, None],
|
|
# clocks
|
|
"forward_clk": 0,
|
|
"backward_clk": 0,
|
|
}
|
|
return _DEVICE_STATE[device]
|
|
|
|
|
|
# (ADD) detect torchao wrapper tensors
|
|
def _is_ao_quantized_tensor(t: Optional[torch.Tensor]) -> bool:
|
|
if t is None:
|
|
return False
|
|
try:
|
|
if has_torch_function_unary(t):
|
|
return t.__class__.__module__.startswith("torchao.")
|
|
except Exception:
|
|
pass
|
|
for attr in (
|
|
"_scale",
|
|
"_scales",
|
|
"_zero_point",
|
|
"_zp",
|
|
"_block_size",
|
|
"_group_size",
|
|
"_pack_dim",
|
|
):
|
|
if hasattr(t, attr):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _is_quantized_tensor(t: Optional[torch.Tensor]) -> bool:
|
|
if t is None:
|
|
return False
|
|
# torch quantized tensors
|
|
try:
|
|
if torch.is_quantized(t): # type: ignore[attr-defined]
|
|
return True
|
|
except Exception:
|
|
pass
|
|
# (ADD) torchao quantized wrappers
|
|
if _is_ao_quantized_tensor(t):
|
|
return True
|
|
# packed/int formats (weight-only)
|
|
return not t.dtype.is_floating_point
|
|
|
|
|
|
def _ensure_cpu_pinned(t: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
|
if t is None:
|
|
return None
|
|
if t.device.type != "cpu":
|
|
try:
|
|
t = t.to("cpu", copy=True)
|
|
except Exception:
|
|
t = t.to("cpu")
|
|
# Don't attempt to pin quantized tensors; many backends don't support it
|
|
if _is_quantized_tensor(t):
|
|
return t
|
|
if torch.cuda.is_available():
|
|
try:
|
|
t = t.pin_memory()
|
|
except RuntimeError:
|
|
pass
|
|
return t
|
|
|
|
|
|
def _move_params_to_cpu_and_pin(module: nn.Module):
|
|
"""Force parameters to CPU (+pinned) so we can 'bounce' them per forward/backward."""
|
|
with torch.no_grad():
|
|
if hasattr(module, "weight") and isinstance(module.weight, nn.Parameter):
|
|
module.weight.data = _ensure_cpu_pinned(module.weight.data).detach()
|
|
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
|
|
if module.bias is not None:
|
|
module.bias.data = _ensure_cpu_pinned(module.bias.data).detach()
|
|
|
|
|
|
# ==========================
|
|
# Autograd functions (CUDA)
|
|
# ==========================
|
|
|
|
|
|
class _BouncingLinearFn(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, weight_cpu, bias_cpu, device: torch.device):
|
|
# choose compute dtype to match activations
|
|
target_dtype = (
|
|
x.dtype
|
|
if x.dtype in (torch.bfloat16, torch.float16, torch.float32)
|
|
else torch.bfloat16
|
|
)
|
|
|
|
# GPU-side dequant/cast for quantized; float path unchanged
|
|
def _materialize_linear_weight(cpu_w, dev):
|
|
if _is_quantized_tensor(cpu_w):
|
|
# move quantized wrapper to GPU -> dequantize on GPU -> cast on GPU
|
|
w_q_gpu = cpu_w.to(dev, non_blocking=True)
|
|
try:
|
|
w_fp_gpu = w_q_gpu.dequantize()
|
|
except Exception:
|
|
w_fp_gpu = w_q_gpu.to(dtype=torch.float32, non_blocking=True)
|
|
if w_fp_gpu.dtype != target_dtype:
|
|
w_fp_gpu = w_fp_gpu.to(target_dtype, non_blocking=True)
|
|
return w_fp_gpu
|
|
# float path (preserve original behavior: NO dtype cast)
|
|
w_gpu = cpu_w.to(dev, non_blocking=True)
|
|
return w_gpu
|
|
|
|
if device.type != "cuda":
|
|
out = F.linear(
|
|
x.to("cpu"),
|
|
_materialize_linear_weight(weight_cpu, torch.device("cpu")),
|
|
bias_cpu,
|
|
)
|
|
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
|
|
ctx.device = torch.device("cpu")
|
|
return out.to(x.device)
|
|
|
|
state = _get_device_state(device)
|
|
ts = state["transfer_stream"]
|
|
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
|
|
ev_tx_f = state["transfer_forward_finished_event"]
|
|
ev_cu_s = state["compute_forward_start_event"]
|
|
idx = state["forward_clk"]
|
|
|
|
with torch.cuda.stream(ts):
|
|
ts.wait_event(ev_cu_s)
|
|
w_bufs[idx] = _materialize_linear_weight(weight_cpu, device)
|
|
b_bufs[idx] = (
|
|
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
|
|
)
|
|
state["forward_clk"] ^= 1
|
|
ev_tx_f.record()
|
|
|
|
torch.cuda.current_stream().wait_event(ev_tx_f)
|
|
ev_cu_s.record()
|
|
out = F.linear(x, w_bufs[idx], b_bufs[idx])
|
|
|
|
ctx.save_for_backward(x, weight_cpu, bias_cpu)
|
|
ctx.device = device
|
|
ctx.target_dtype = target_dtype
|
|
return out
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
x, weight_cpu, bias_cpu = ctx.saved_tensors
|
|
device = ctx.device
|
|
target_dtype = getattr(ctx, "target_dtype", grad_out.dtype)
|
|
|
|
if device.type != "cuda":
|
|
go_cpu = grad_out.to("cpu")
|
|
x_cpu = x.to("cpu")
|
|
w_mat = (
|
|
weight_cpu.dequantize()
|
|
if _is_quantized_tensor(weight_cpu)
|
|
else weight_cpu
|
|
)
|
|
if w_mat.dtype != target_dtype and target_dtype in (
|
|
torch.bfloat16,
|
|
torch.float16,
|
|
torch.float32,
|
|
):
|
|
w_mat = w_mat.to(target_dtype)
|
|
grad_input = go_cpu @ w_mat
|
|
grad_weight = (
|
|
go_cpu.flatten(0, -2).T @ x_cpu.flatten(0, -2)
|
|
if getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
else None
|
|
)
|
|
grad_bias = (
|
|
go_cpu.sum(dim=tuple(range(go_cpu.ndim - 1)))
|
|
if (bias_cpu is not None and getattr(bias_cpu, "requires_grad", False))
|
|
else None
|
|
)
|
|
return grad_input.to(grad_out.device), grad_weight, grad_bias, None
|
|
|
|
state = _get_device_state(device)
|
|
transfer_stream = state["transfer_stream"]
|
|
transfer_grad_stream = state["transfer_grad_stream"]
|
|
|
|
w_bwd_buffers = state["w_bwd_buffers"]
|
|
w_grad_buffers = state["w_grad_buffers"]
|
|
b_grad_buffers = state["b_grad_buffers"]
|
|
|
|
ev_tx_b = state["transfer_backward_finished_event"]
|
|
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
|
|
ev_cu_b_start = state["compute_backward_start_event"]
|
|
ev_cu_b_finish = state["compute_backward_finished_event"]
|
|
|
|
idx = state["backward_clk"]
|
|
|
|
# GPU-side dequant/cast for quantized; float path unchanged
|
|
def _materialize_for_bwd(cpu_w):
|
|
if _is_quantized_tensor(cpu_w):
|
|
w_q_gpu = cpu_w.to(device, non_blocking=True)
|
|
try:
|
|
w_fp_gpu = w_q_gpu.dequantize()
|
|
except Exception:
|
|
w_fp_gpu = w_q_gpu.to(dtype=torch.float32, non_blocking=True)
|
|
if w_fp_gpu.dtype != target_dtype:
|
|
w_fp_gpu = w_fp_gpu.to(target_dtype, non_blocking=True)
|
|
return w_fp_gpu
|
|
# float path (preserve original behavior: NO dtype cast)
|
|
w = cpu_w.to(device, non_blocking=True)
|
|
return w
|
|
|
|
with torch.cuda.stream(transfer_stream):
|
|
transfer_stream.wait_event(ev_cu_b_start)
|
|
w_bwd_buffers[idx] = _materialize_for_bwd(weight_cpu)
|
|
state["backward_clk"] ^= 1
|
|
ev_tx_b.record()
|
|
|
|
torch.cuda.current_stream().wait_event(ev_tx_b)
|
|
ev_cu_b_start.record()
|
|
|
|
# grad wrt input (GPU)
|
|
grad_input = grad_out.to(dtype=target_dtype) @ w_bwd_buffers[idx]
|
|
|
|
# ensure previous grad-to-CPU transfer that used this slot finished
|
|
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
|
|
|
|
# compute grads if float masters exist
|
|
grad_weight = None
|
|
grad_bias = None
|
|
if (
|
|
getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
):
|
|
w_grad_buffers[idx] = grad_out.flatten(0, -2).T @ x.flatten(0, -2)
|
|
if bias_cpu is not None and getattr(bias_cpu, "requires_grad", False):
|
|
reduce_dims = tuple(range(grad_out.ndim - 1))
|
|
b_grad_buffers[idx] = grad_out.sum(dim=reduce_dims)
|
|
|
|
ev_cu_b_finish.record()
|
|
|
|
with torch.cuda.stream(transfer_grad_stream):
|
|
transfer_grad_stream.wait_event(ev_cu_b_finish)
|
|
if (
|
|
getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
):
|
|
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
|
|
if bias_cpu is not None and getattr(bias_cpu, "requires_grad", False):
|
|
grad_bias = b_grad_buffers[idx].to("cpu", non_blocking=True)
|
|
state["transfer_weight_backward_finished_event"].record()
|
|
|
|
return grad_input.to(dtype=grad_out.dtype), grad_weight, grad_bias, None
|
|
|
|
|
|
class _BouncingConv2dFn(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
x,
|
|
weight_cpu,
|
|
bias_cpu,
|
|
device: torch.device,
|
|
stride: Tuple[int, int],
|
|
padding: Tuple[int, int],
|
|
dilation: Tuple[int, int],
|
|
groups: int,
|
|
):
|
|
target_dtype = (
|
|
x.dtype
|
|
if x.dtype in (torch.bfloat16, torch.float16, torch.float32)
|
|
else torch.bfloat16
|
|
)
|
|
|
|
# GPU-side dequant/cast for quantized; float path unchanged
|
|
def _materialize_conv_weight(cpu_w, dev):
|
|
if _is_quantized_tensor(cpu_w):
|
|
w_q_gpu = cpu_w.to(dev, non_blocking=True)
|
|
try:
|
|
w_fp_gpu = w_q_gpu.dequantize()
|
|
except Exception:
|
|
w_fp_gpu = w_q_gpu.to(dtype=torch.float32, non_blocking=True)
|
|
if w_fp_gpu.dtype != target_dtype:
|
|
w_fp_gpu = w_fp_gpu.to(target_dtype, non_blocking=True)
|
|
return w_fp_gpu
|
|
# float path (preserve original behavior: NO dtype cast)
|
|
w_gpu = cpu_w.to(dev, non_blocking=True)
|
|
return w_gpu
|
|
|
|
if device.type != "cuda":
|
|
out = F.conv2d(
|
|
x.to("cpu"),
|
|
_materialize_conv_weight(weight_cpu, torch.device("cpu")),
|
|
bias_cpu,
|
|
stride,
|
|
padding,
|
|
dilation,
|
|
groups,
|
|
)
|
|
ctx.save_for_backward(x.to("cpu"), weight_cpu, bias_cpu)
|
|
ctx.meta = ("cpu", stride, padding, dilation, groups, target_dtype)
|
|
return out.to(x.device)
|
|
|
|
state = _get_device_state(device)
|
|
ts = state["transfer_stream"]
|
|
w_bufs, b_bufs = state["w_buffers"], state["b_buffers"]
|
|
ev_tx_f = state["transfer_forward_finished_event"]
|
|
ev_cu_s = state["compute_forward_start_event"]
|
|
idx = state["forward_clk"]
|
|
|
|
with torch.cuda.stream(ts):
|
|
ts.wait_event(ev_cu_s)
|
|
w_bufs[idx] = _materialize_conv_weight(weight_cpu, device)
|
|
b_bufs[idx] = (
|
|
bias_cpu.to(device, non_blocking=True) if bias_cpu is not None else None
|
|
)
|
|
state["forward_clk"] ^= 1
|
|
ev_tx_f.record()
|
|
|
|
torch.cuda.current_stream().wait_event(ev_tx_f)
|
|
ev_cu_s.record()
|
|
out = F.conv2d(x, w_bufs[idx], b_bufs[idx], stride, padding, dilation, groups)
|
|
|
|
ctx.save_for_backward(x, weight_cpu, bias_cpu)
|
|
ctx.meta = (device, stride, padding, dilation, groups, target_dtype)
|
|
return out
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
x, weight_cpu, bias_cpu = ctx.saved_tensors
|
|
device, stride, padding, dilation, groups, target_dtype = ctx.meta
|
|
|
|
if (
|
|
isinstance(device, torch.device) and device.type != "cuda"
|
|
) or device == "cpu":
|
|
go = grad_out.to("cpu")
|
|
x_cpu = x.to("cpu")
|
|
w_cpu = (
|
|
weight_cpu.dequantize()
|
|
if _is_quantized_tensor(weight_cpu)
|
|
else weight_cpu
|
|
)
|
|
if w_cpu.dtype != target_dtype and target_dtype in (
|
|
torch.bfloat16,
|
|
torch.float16,
|
|
torch.float32,
|
|
):
|
|
w_cpu = w_cpu.to(target_dtype)
|
|
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
|
|
|
|
grad_input = conv2d_input(
|
|
x_cpu.shape,
|
|
w_cpu,
|
|
go,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
grad_weight = (
|
|
conv2d_weight(
|
|
x_cpu,
|
|
w_cpu.shape,
|
|
go,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
if getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
else None
|
|
)
|
|
grad_bias = (
|
|
go.sum(dim=(0, 2, 3))
|
|
if (bias_cpu is not None and getattr(bias_cpu, "requires_grad", False))
|
|
else None
|
|
)
|
|
return (
|
|
grad_input.to(grad_out.device),
|
|
grad_weight,
|
|
grad_bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
state = _get_device_state(device)
|
|
transfer_stream = state["transfer_stream"]
|
|
transfer_grad_stream = state["transfer_grad_stream"]
|
|
|
|
w_bwd_buffers = state["w_bwd_buffers"]
|
|
w_grad_buffers = state["w_grad_buffers"]
|
|
b_grad_buffers = state["b_grad_buffers"]
|
|
|
|
ev_tx_b = state["transfer_backward_finished_event"]
|
|
ev_tx_w_bwd_done = state["transfer_weight_backward_finished_event"]
|
|
ev_cu_b_start = state["compute_backward_start_event"]
|
|
ev_cu_b_finish = state["compute_backward_finished_event"]
|
|
|
|
idx = state["backward_clk"]
|
|
|
|
# GPU-side dequant/cast for quantized; float path unchanged
|
|
def _materialize_for_bwd(cpu_w):
|
|
if _is_quantized_tensor(cpu_w):
|
|
w_q_gpu = cpu_w.to(device, non_blocking=True)
|
|
try:
|
|
w_fp_gpu = w_q_gpu.dequantize()
|
|
except Exception:
|
|
w_fp_gpu = w_q_gpu.to(dtype=torch.float32, non_blocking=True)
|
|
if w_fp_gpu.dtype != target_dtype:
|
|
w_fp_gpu = w_fp_gpu.to(target_dtype, non_blocking=True)
|
|
return w_fp_gpu
|
|
# float path (preserve original behavior: NO dtype cast)
|
|
w = cpu_w.to(device, non_blocking=True)
|
|
return w
|
|
|
|
# Stage weights for input-grad compute
|
|
with torch.cuda.stream(transfer_stream):
|
|
transfer_stream.wait_event(ev_cu_b_start)
|
|
w_bwd_buffers[idx] = _materialize_for_bwd(weight_cpu)
|
|
state["backward_clk"] ^= 1
|
|
ev_tx_b.record()
|
|
|
|
torch.cuda.current_stream().wait_event(ev_tx_b)
|
|
ev_cu_b_start.record()
|
|
|
|
from torch.nn.grad import conv2d_input, conv2d_weight # type: ignore
|
|
|
|
grad_input = conv2d_input(
|
|
x.shape,
|
|
w_bwd_buffers[idx],
|
|
grad_out.to(dtype=target_dtype),
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
# Ensure previous grad transfer that used this slot is done
|
|
torch.cuda.current_stream().wait_event(ev_tx_w_bwd_done)
|
|
|
|
# Compute heavy grads on GPU into staging buffers
|
|
grad_weight = None
|
|
grad_bias = None
|
|
if (
|
|
getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
):
|
|
w_grad_buffers[idx] = conv2d_weight(
|
|
x,
|
|
weight_cpu.shape,
|
|
grad_out,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
if bias_cpu is not None and getattr(bias_cpu, "requires_grad", False):
|
|
b_grad_buffers[idx] = grad_out.sum(dim=(0, 2, 3))
|
|
|
|
ev_cu_b_finish.record()
|
|
|
|
# Launch CPU copies on the dedicated grad stream (overlaps with next H2D)
|
|
with torch.cuda.stream(transfer_grad_stream):
|
|
transfer_grad_stream.wait_event(ev_cu_b_finish)
|
|
if (
|
|
getattr(weight_cpu, "requires_grad", False)
|
|
and weight_cpu.dtype.is_floating_point
|
|
):
|
|
grad_weight = w_grad_buffers[idx].to("cpu", non_blocking=True)
|
|
if bias_cpu is not None and getattr(bias_cpu, "requires_grad", False):
|
|
grad_bias = b_grad_buffers[idx].to("cpu", non_blocking=True)
|
|
state["transfer_weight_backward_finished_event"].record()
|
|
|
|
return (
|
|
grad_input.to(dtype=grad_out.dtype),
|
|
grad_weight,
|
|
grad_bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
class BaseLayerMemoryManager:
|
|
def __init__(
|
|
self,
|
|
module: nn.Module,
|
|
manager: "MemoryManager",
|
|
):
|
|
self.module: nn.Module = module
|
|
self.manager: "MemoryManager" = manager
|
|
|
|
@classmethod
|
|
def attach(cls, module: nn.Module, manager: "MemoryManager"):
|
|
if hasattr(module, "_layer_memory_manager"):
|
|
return
|
|
module._layer_memory_manager = cls(module, manager)
|
|
|
|
# mark parameters as memory managed
|
|
for param in module.parameters(recurse=False):
|
|
param._is_memory_managed = True
|
|
|
|
|
|
class LinearLayerMemoryManager(BaseLayerMemoryManager):
|
|
def __init__(
|
|
self,
|
|
module: nn.Module,
|
|
manager: "MemoryManager",
|
|
):
|
|
super().__init__(module, manager)
|
|
|
|
# 1) Move params to CPU + pin memory for fast H2D
|
|
_move_params_to_cpu_and_pin(self.module)
|
|
|
|
# 2) Hijack forward
|
|
if hasattr(self.module, "ara_lora_ref"):
|
|
# ARA, we need to replace the lora forward
|
|
self._original_forward = getattr(self.module.ara_lora_ref(), "org_forward")
|
|
else:
|
|
self._original_forward = getattr(self.module, "forward")
|
|
|
|
def _mm_forward(x, *args, **kwargs):
|
|
# ensure we only use expected signature (Linear: x)
|
|
if args or kwargs:
|
|
# fall back to original if a custom signature is used
|
|
return self._original_forward(x, *args, **kwargs)
|
|
|
|
weight_cpu = self.module.weight
|
|
bias_cpu = getattr(self.module, "bias", None)
|
|
device = self.manager.process_device
|
|
|
|
# NOTE: do NOT move params to device here; autograd fn streams & bounces them
|
|
return _BouncingLinearFn.apply(x, weight_cpu, bias_cpu, device)
|
|
|
|
if hasattr(self.module, "ara_lora_ref"):
|
|
self.module.ara_lora_ref().org_forward = _mm_forward
|
|
else:
|
|
self.module.forward = _mm_forward
|
|
|
|
self.module._memory_management_device = self.manager.process_device
|
|
|
|
|
|
class ConvLayerMemoryManager(BaseLayerMemoryManager):
|
|
def __init__(
|
|
self,
|
|
module: nn.Module,
|
|
manager: "MemoryManager",
|
|
):
|
|
super().__init__(module, manager)
|
|
|
|
# 1) Move params to CPU + pin memory for fast H2D
|
|
_move_params_to_cpu_and_pin(self.module)
|
|
|
|
# Cache static conv attributes from the module
|
|
stride = (
|
|
self.module.stride
|
|
if isinstance(self.module.stride, tuple)
|
|
else (self.module.stride, self.module.stride)
|
|
)
|
|
padding = (
|
|
self.module.padding
|
|
if isinstance(self.module.padding, tuple)
|
|
else (self.module.padding, self.module.padding)
|
|
)
|
|
dilation = (
|
|
self.module.dilation
|
|
if isinstance(self.module.dilation, tuple)
|
|
else (self.module.dilation, self.module.dilation)
|
|
)
|
|
groups = self.module.groups
|
|
|
|
# 2) Hijack forward
|
|
if hasattr(self.module, "ara_lora_ref"):
|
|
# ARA, we need to replace the lora forward
|
|
self._original_forward = getattr(self.module.ara_lora_ref(), "org_forward")
|
|
else:
|
|
self._original_forward = getattr(self.module, "forward")
|
|
|
|
def _mm_forward(x, *args, **kwargs):
|
|
# Support the typical Conv2d(x) call; if user passes uncommon extras, fallback.
|
|
if args or kwargs:
|
|
return self._original_forward(x, *args, **kwargs)
|
|
|
|
weight_cpu = self.module.weight
|
|
bias_cpu = getattr(self.module, "bias", None)
|
|
device = self.manager.process_device
|
|
|
|
return _BouncingConv2dFn.apply(
|
|
x, weight_cpu, bias_cpu, device, stride, padding, dilation, groups
|
|
)
|
|
|
|
if hasattr(self.module, "ara_lora_ref"):
|
|
self.module.ara_lora_ref().org_forward = _mm_forward
|
|
else:
|
|
self.module.forward = _mm_forward
|
|
|
|
self.module._memory_management_device = self.manager.process_device
|