mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
348 lines
17 KiB
Python
348 lines
17 KiB
Python
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
import torch
|
|
|
|
from diffusers.image_processor import PipelineImageInput
|
|
import numpy as np
|
|
from PIL import Image
|
|
import torch.nn.functional as F
|
|
from torchvision import transforms
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, XLA_AVAILABLE
|
|
|
|
|
|
class Flex2Pipeline(FluxControlPipeline):
|
|
def __init__(
|
|
self,
|
|
scheduler,
|
|
vae,
|
|
text_encoder,
|
|
tokenizer,
|
|
text_encoder_2,
|
|
tokenizer_2,
|
|
transformer,
|
|
):
|
|
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
control_image: Optional[PipelineImageInput] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 28,
|
|
sigmas: Optional[List[float]] = None,
|
|
guidance_scale: float = 3.5,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 512,
|
|
control_image_idx: int = 0,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
will be used instead
|
|
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
|
images must be passed as a list such that each element of the list can be correctly batched for input
|
|
to a single ControlNet.
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|
will be used.
|
|
guidance_scale (`float`, *optional*, defaults to 3.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
|
images.
|
|
"""
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# 3. Prepare text embeddings
|
|
lora_scale = (
|
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
text_ids,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
|
|
# 4. Prepare latent variables
|
|
# num_channels_latents = self.transformer.config.in_channels // 8
|
|
num_channels_latents = 128 // 8
|
|
|
|
# pull mask off control image if there is one it is a pil image
|
|
mask = None
|
|
if control_image is not None and control_image.mode == "RGBA":
|
|
control_img_array = np.array(control_image)
|
|
mask = control_img_array[:, :, 3:4]
|
|
# scale it to 0 - 1
|
|
mask = mask / 255.0
|
|
# control image ideally would be a full image here
|
|
control_img_array = control_img_array[:, :, :3]
|
|
control_image = Image.fromarray(control_img_array.astype(np.uint8))
|
|
|
|
if control_image is not None:
|
|
|
|
control_image = self.prepare_image(
|
|
image=control_image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=self.vae.dtype,
|
|
)
|
|
|
|
if control_image.ndim == 4:
|
|
num_control_channels = num_channels_latents
|
|
control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
|
|
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
|
|
|
if mask is not None:
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
])
|
|
mask = transform(mask).to(device, dtype=control_image.dtype).unsqueeze(0)
|
|
# resize mask to match control image
|
|
mask = F.interpolate(mask, size=(control_image.shape[2], control_image.shape[3]), mode="bilinear", align_corners=False)
|
|
mask = mask.to(device)
|
|
# apply the mask to the control image so the inpaint latent area is 0
|
|
# mask is currently 0 for inpaint area and 1 for image area
|
|
control_image = control_image * mask
|
|
# invert mask so it is 1 for inpaint area and 0 for image area
|
|
mask = 1 - mask
|
|
control_image = torch.cat([control_image, mask], dim=1)
|
|
num_control_channels += 1
|
|
|
|
height_control_image, width_control_image = control_image.shape[2:]
|
|
control_image = self._pack_latents(
|
|
control_image,
|
|
batch_size * num_images_per_prompt,
|
|
num_control_channels,
|
|
height_control_image,
|
|
width_control_image,
|
|
)
|
|
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 5. Prepare timesteps
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
|
image_seq_len = latents.shape[1]
|
|
mu = calculate_shift(
|
|
image_seq_len,
|
|
self.scheduler.config.get("base_image_seq_len", 256),
|
|
self.scheduler.config.get("max_image_seq_len", 4096),
|
|
self.scheduler.config.get("base_shift", 0.5),
|
|
self.scheduler.config.get("max_shift", 1.15),
|
|
)
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
sigmas=sigmas,
|
|
mu=mu,
|
|
)
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# handle guidance
|
|
if self.transformer.config.guidance_embeds:
|
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
|
guidance = guidance.expand(latents.shape[0])
|
|
else:
|
|
guidance = None
|
|
|
|
# 6. Denoising loop
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# make a blank control latent
|
|
control_image_list = [
|
|
# impainting
|
|
torch.cat([torch.zeros_like(latents), torch.ones_like(latents[:, :, :4])], dim=2),
|
|
# control
|
|
torch.zeros_like(latents),
|
|
]
|
|
if control_image is not None:
|
|
|
|
control_image_list[control_image_idx] = control_image
|
|
|
|
latent_model_input = torch.cat([latents] + control_image_list, dim=2)
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=pooled_prompt_embeds,
|
|
encoder_hidden_states=prompt_embeds,
|
|
txt_ids=text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
else:
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return FluxPipelineOutput(images=image)
|
|
|
|
|