mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
449 lines
16 KiB
Python
449 lines
16 KiB
Python
import time
|
|
from collections import OrderedDict
|
|
import os
|
|
|
|
from leco.train_util import predict_noise
|
|
from toolkit.kohya_model_util import load_vae
|
|
from toolkit.lora_special import LoRASpecialNetwork
|
|
from toolkit.optimizer import get_optimizer
|
|
from toolkit.paths import REPOS_ROOT
|
|
import sys
|
|
|
|
sys.path.append(REPOS_ROOT)
|
|
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
|
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
from jobs.process import BaseTrainProcess
|
|
from toolkit.metadata import get_meta_for_safetensors
|
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
|
|
import gc
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from leco import train_util, model_util
|
|
from toolkit.config_modules import SaveConfig, LogingConfig, SampleConfig, NetworkConfig, TrainConfig, ModelConfig
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
|
|
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
|
|
|
|
|
|
class StableDiffusion:
|
|
def __init__(self, vae, tokenizer, text_encoder, unet, noise_scheduler):
|
|
self.vae = vae
|
|
self.tokenizer = tokenizer
|
|
self.text_encoder = text_encoder
|
|
self.unet = unet
|
|
self.noise_scheduler = noise_scheduler
|
|
|
|
|
|
class BaseSDTrainProcess(BaseTrainProcess):
|
|
def __init__(self, process_id: int, job, config: OrderedDict):
|
|
super().__init__(process_id, job, config)
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
self.network_config = NetworkConfig(**self.get_conf('network', None))
|
|
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
|
|
self.train_config = TrainConfig(**self.get_conf('train', {}))
|
|
self.model_config = ModelConfig(**self.get_conf('model', {}))
|
|
self.save_config = SaveConfig(**self.get_conf('save', {}))
|
|
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
|
|
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
|
|
self.optimizer = None
|
|
self.lr_scheduler = None
|
|
self.sd: 'StableDiffusion' = None
|
|
|
|
# added later
|
|
self.network = None
|
|
|
|
def sample(self, step=None):
|
|
sample_folder = os.path.join(self.save_root, 'samples')
|
|
if not os.path.exists(sample_folder):
|
|
os.makedirs(sample_folder, exist_ok=True)
|
|
|
|
if self.network is not None:
|
|
self.network.eval()
|
|
|
|
# save current seed state for training
|
|
rng_state = torch.get_rng_state()
|
|
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
|
|
|
|
original_device_dict = {
|
|
'vae': self.sd.vae.device,
|
|
'unet': self.sd.unet.device,
|
|
'text_encoder': self.sd.text_encoder.device,
|
|
# 'tokenizer': self.sd.tokenizer.device,
|
|
}
|
|
|
|
self.sd.vae.to(self.device_torch)
|
|
self.sd.unet.to(self.device_torch)
|
|
self.sd.text_encoder.to(self.device_torch)
|
|
# self.sd.tokenizer.to(self.device_torch)
|
|
# TODO add clip skip
|
|
|
|
pipeline = StableDiffusionPipeline(
|
|
vae=self.sd.vae,
|
|
unet=self.sd.unet,
|
|
text_encoder=self.sd.text_encoder,
|
|
tokenizer=self.sd.tokenizer,
|
|
scheduler=self.sd.noise_scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
# disable progress bar
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
start_seed = self.sample_config.seed
|
|
start_multiplier = self.network.multiplier
|
|
current_seed = start_seed
|
|
|
|
pipeline.to(self.device_torch)
|
|
with self.network:
|
|
with torch.no_grad():
|
|
if self.network is not None:
|
|
assert self.network.is_active
|
|
if self.logging_config.verbose:
|
|
print("network_state", {
|
|
'is_active': self.network.is_active,
|
|
'multiplier': self.network.multiplier,
|
|
})
|
|
|
|
for i in tqdm(range(len(self.sample_config.prompts)), desc=f"Generating Samples - step: {step}", leave=False):
|
|
raw_prompt = self.sample_config.prompts[i]
|
|
|
|
neg = self.sample_config.neg
|
|
multiplier = self.sample_config.network_multiplier
|
|
p_split = raw_prompt.split('--')
|
|
prompt = p_split[0].strip()
|
|
|
|
if len(p_split) > 1:
|
|
for split in p_split:
|
|
flag = split[:1]
|
|
content = split[1:].strip()
|
|
if flag == 'n':
|
|
neg = content
|
|
elif flag == 'm':
|
|
# multiplier
|
|
multiplier = float(content)
|
|
|
|
height = self.sample_config.height
|
|
width = self.sample_config.width
|
|
height = max(64, height - height % 8) # round to divisible by 8
|
|
width = max(64, width - width % 8) # round to divisible by 8
|
|
|
|
if self.sample_config.walk_seed:
|
|
current_seed += i
|
|
|
|
if self.network is not None:
|
|
self.network.multiplier = multiplier
|
|
torch.manual_seed(current_seed)
|
|
torch.cuda.manual_seed(current_seed)
|
|
|
|
img = pipeline(
|
|
prompt,
|
|
height=height,
|
|
width=width,
|
|
num_inference_steps=self.sample_config.sample_steps,
|
|
guidance_scale=self.sample_config.guidance_scale,
|
|
negative_prompt=neg,
|
|
).images[0]
|
|
|
|
step_num = ''
|
|
if step is not None:
|
|
# zero-pad 9 digits
|
|
step_num = f"_{str(step).zfill(9)}"
|
|
seconds_since_epoch = int(time.time())
|
|
# zero-pad 2 digits
|
|
i_str = str(i).zfill(2)
|
|
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
|
|
output_path = os.path.join(sample_folder, filename)
|
|
img.save(output_path)
|
|
|
|
# clear pipeline and cache to reduce vram usage
|
|
del pipeline
|
|
torch.cuda.empty_cache()
|
|
|
|
# restore training state
|
|
torch.set_rng_state(rng_state)
|
|
if cuda_rng_state is not None:
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
|
|
self.sd.vae.to(original_device_dict['vae'])
|
|
self.sd.unet.to(original_device_dict['unet'])
|
|
self.sd.text_encoder.to(original_device_dict['text_encoder'])
|
|
if self.network is not None:
|
|
self.network.train()
|
|
self.network.multiplier = start_multiplier
|
|
# self.sd.tokenizer.to(original_device_dict['tokenizer'])
|
|
|
|
def update_training_metadata(self):
|
|
self.add_meta(OrderedDict({"training_info": self.get_training_info()}))
|
|
|
|
def get_training_info(self):
|
|
info = OrderedDict({
|
|
'step': self.step_num + 1
|
|
})
|
|
return info
|
|
|
|
def save(self, step=None):
|
|
if not os.path.exists(self.save_root):
|
|
os.makedirs(self.save_root, exist_ok=True)
|
|
|
|
step_num = ''
|
|
if step is not None:
|
|
# zeropad 9 digits
|
|
step_num = f"_{str(step).zfill(9)}"
|
|
|
|
self.update_training_metadata()
|
|
filename = f'{self.job.name}{step_num}.safetensors'
|
|
file_path = os.path.join(self.save_root, filename)
|
|
# prepare meta
|
|
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
|
|
if self.network is not None:
|
|
# TODO handle dreambooth, fine tuning, etc
|
|
self.network.save_weights(
|
|
file_path,
|
|
dtype=get_torch_dtype(self.save_config.dtype),
|
|
metadata=save_meta
|
|
)
|
|
else:
|
|
# TODO handle dreambooth, fine tuning, etc
|
|
# will probably have to convert dict back to LDM
|
|
ValueError("Non network training is not currently supported")
|
|
|
|
self.print(f"Saved to {file_path}")
|
|
|
|
# Called before the model is loaded
|
|
def hook_before_model_load(self):
|
|
# override in subclass
|
|
pass
|
|
|
|
def hook_add_extra_train_params(self, params):
|
|
# override in subclass
|
|
return params
|
|
|
|
def hook_before_train_loop(self):
|
|
pass
|
|
|
|
def get_latent_noise(
|
|
self,
|
|
height=None,
|
|
width=None,
|
|
pixel_height=None,
|
|
pixel_width=None,
|
|
):
|
|
if height is None and pixel_height is None:
|
|
raise ValueError("height or pixel_height must be specified")
|
|
if width is None and pixel_width is None:
|
|
raise ValueError("width or pixel_width must be specified")
|
|
if height is None:
|
|
height = pixel_height // VAE_SCALE_FACTOR
|
|
if width is None:
|
|
width = pixel_width // VAE_SCALE_FACTOR
|
|
|
|
noise = torch.randn(
|
|
(
|
|
self.train_config.batch_size,
|
|
UNET_IN_CHANNELS,
|
|
height,
|
|
width,
|
|
),
|
|
device="cpu",
|
|
)
|
|
noise = apply_noise_offset(noise, self.train_config.noise_offset)
|
|
return noise
|
|
|
|
def hook_train_loop(self):
|
|
# return loss
|
|
return 0.0
|
|
|
|
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
|
|
def diffuse_some_steps(
|
|
self,
|
|
latents: torch.FloatTensor,
|
|
text_embeddings: torch.FloatTensor,
|
|
total_timesteps: int = 1000,
|
|
start_timesteps=0,
|
|
**kwargs,
|
|
):
|
|
|
|
for timestep in tqdm(self.sd.noise_scheduler.timesteps[start_timesteps:total_timesteps], leave=False):
|
|
noise_pred = train_util.predict_noise(
|
|
self.sd.unet, self.sd.noise_scheduler, timestep, latents, text_embeddings, **kwargs
|
|
)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.sd.noise_scheduler.step(noise_pred, timestep, latents).prev_sample
|
|
|
|
# return latents_steps
|
|
return latents
|
|
|
|
def run(self):
|
|
super().run()
|
|
|
|
### HOOK ###
|
|
self.hook_before_model_load()
|
|
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
|
|
tokenizer, text_encoder, unet, noise_scheduler = model_util.load_models(
|
|
self.model_config.name_or_path,
|
|
scheduler_name=self.train_config.noise_scheduler,
|
|
v2=self.model_config.is_v2,
|
|
v_pred=self.model_config.is_v_pred,
|
|
)
|
|
# just for now or of we want to load a custom one
|
|
# put on cpu for now, we only need it when sampling
|
|
vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
|
|
vae.eval()
|
|
self.sd = StableDiffusion(vae, tokenizer, text_encoder, unet, noise_scheduler)
|
|
|
|
text_encoder.to(self.device_torch, dtype=dtype)
|
|
text_encoder.eval()
|
|
|
|
unet.to(self.device_torch, dtype=dtype)
|
|
if self.train_config.xformers:
|
|
unet.enable_xformers_memory_efficient_attention()
|
|
unet.requires_grad_(False)
|
|
unet.eval()
|
|
|
|
if self.network_config is not None:
|
|
self.network = LoRASpecialNetwork(
|
|
text_encoder=text_encoder,
|
|
unet=unet,
|
|
lora_dim=self.network_config.rank,
|
|
multiplier=1.0,
|
|
alpha=self.network_config.alpha
|
|
)
|
|
|
|
self.network.force_to(self.device_torch, dtype=dtype)
|
|
|
|
self.network.apply_to(
|
|
text_encoder,
|
|
unet,
|
|
self.train_config.train_text_encoder,
|
|
self.train_config.train_unet
|
|
)
|
|
|
|
self.network.prepare_grad_etc(text_encoder, unet)
|
|
|
|
params = self.network.prepare_optimizer_params(
|
|
text_encoder_lr=self.train_config.lr,
|
|
unet_lr=self.train_config.lr,
|
|
default_lr=self.train_config.lr
|
|
)
|
|
|
|
else:
|
|
params = []
|
|
# assume dreambooth/finetune
|
|
if self.train_config.train_text_encoder:
|
|
text_encoder.requires_grad_(True)
|
|
text_encoder.train()
|
|
params += text_encoder.parameters()
|
|
if self.train_config.train_unet:
|
|
unet.requires_grad_(True)
|
|
unet.train()
|
|
params += unet.parameters()
|
|
|
|
### HOOK ###
|
|
params = self.hook_add_extra_train_params(params)
|
|
|
|
optimizer_type = self.train_config.optimizer.lower()
|
|
optimizer = get_optimizer(params, optimizer_type, learning_rate=self.train_config.lr,
|
|
optimizer_params=self.train_config.optimizer_params)
|
|
self.optimizer = optimizer
|
|
|
|
lr_scheduler = train_util.get_lr_scheduler(
|
|
self.train_config.lr_scheduler,
|
|
optimizer,
|
|
max_iterations=self.train_config.steps,
|
|
lr_min=self.train_config.lr / 100, # not sure why leco did this, but ill do it to
|
|
)
|
|
|
|
self.lr_scheduler = lr_scheduler
|
|
|
|
### HOOK ###
|
|
self.hook_before_train_loop()
|
|
|
|
# sample first
|
|
self.print("Generating baseline samples before training")
|
|
self.sample(0)
|
|
|
|
self.progress_bar = tqdm(
|
|
total=self.train_config.steps,
|
|
desc=self.job.name,
|
|
leave=True
|
|
)
|
|
self.step_num = 0
|
|
for step in range(self.train_config.steps):
|
|
# todo handle dataloader here maybe, not sure
|
|
|
|
### HOOK ###
|
|
loss_dict = self.hook_train_loop()
|
|
|
|
if self.train_config.optimizer.startswith('dadaptation'):
|
|
learning_rate = (
|
|
optimizer.param_groups[0]["d"] *
|
|
optimizer.param_groups[0]["lr"]
|
|
)
|
|
else:
|
|
learning_rate = optimizer.param_groups[0]['lr']
|
|
|
|
prog_bar_string = f"lr: {learning_rate:.1e}"
|
|
for key, value in loss_dict.items():
|
|
prog_bar_string += f" {key}: {value:.3e}"
|
|
|
|
self.progress_bar.set_postfix_str(prog_bar_string)
|
|
|
|
# don't do on first step
|
|
if self.step_num != self.start_step:
|
|
# pause progress bar
|
|
self.progress_bar.unpause() # makes it so doesn't track time
|
|
if self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0:
|
|
# print above the progress bar
|
|
self.sample(self.step_num)
|
|
|
|
if self.save_config.save_every and self.step_num % self.save_config.save_every == 0:
|
|
# print above the progress bar
|
|
self.print(f"Saving at step {self.step_num}")
|
|
self.save(self.step_num)
|
|
|
|
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
|
|
# log to tensorboard
|
|
if self.writer is not None:
|
|
for key, value in loss_dict.items():
|
|
self.writer.add_scalar(f"{key}", value, self.step_num)
|
|
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
|
|
self.progress_bar.refresh()
|
|
|
|
# sets progress bar to match out step
|
|
self.progress_bar.update(step - self.progress_bar.n)
|
|
# end of step
|
|
self.step_num = step
|
|
|
|
self.sample(self.step_num + 1)
|
|
print("")
|
|
self.save()
|
|
|
|
del (
|
|
self.sd,
|
|
unet,
|
|
noise_scheduler,
|
|
optimizer,
|
|
self.network,
|
|
tokenizer,
|
|
text_encoder,
|
|
)
|
|
|
|
flush()
|