mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
364 lines
14 KiB
Python
364 lines
14 KiB
Python
import json
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Optional, Union, List, Type, TYPE_CHECKING
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from toolkit.metadata import add_model_hash_to_meta
|
|
from toolkit.paths import KEYMAPS_ROOT
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.lycoris_special import LycorisSpecialNetwork, LoConSpecialModule
|
|
from toolkit.lora_special import LoRASpecialNetwork, LoRAModule
|
|
|
|
Network = Union['LycorisSpecialNetwork', 'LoRASpecialNetwork']
|
|
Module = Union['LoConSpecialModule', 'LoRAModule']
|
|
|
|
|
|
class ToolkitModuleMixin:
|
|
def __init__(
|
|
self: Module,
|
|
*args,
|
|
call_super_init: bool = True,
|
|
**kwargs
|
|
):
|
|
if call_super_init:
|
|
super().__init__(*args, **kwargs)
|
|
self.is_checkpointing = False
|
|
self.is_normalizing = False
|
|
self.normalize_scaler = 1.0
|
|
|
|
# this allows us to set different multipliers on a per item in a batch basis
|
|
# allowing us to run positive and negative weights in the same batch
|
|
# really only useful for slider training for now
|
|
def get_multiplier(self: Module, lora_up):
|
|
with torch.no_grad():
|
|
batch_size = lora_up.size(0)
|
|
# batch will have all negative prompts first and positive prompts second
|
|
# our multiplier list is for a prompt pair. So we need to repeat it for positive and negative prompts
|
|
# if there is more than our multiplier, it is likely a batch size increase, so we need to
|
|
# interleave the multipliers
|
|
if isinstance(self.multiplier, list):
|
|
if len(self.multiplier) == 0:
|
|
# single item, just return it
|
|
return self.multiplier[0]
|
|
elif len(self.multiplier) == batch_size:
|
|
# not doing CFG
|
|
multiplier_tensor = torch.tensor(self.multiplier).to(lora_up.device, dtype=lora_up.dtype)
|
|
else:
|
|
|
|
# we have a list of multipliers, so we need to get the multiplier for this batch
|
|
multiplier_tensor = torch.tensor(self.multiplier * 2).to(lora_up.device, dtype=lora_up.dtype)
|
|
# should be 1 for if total batch size was 1
|
|
num_interleaves = (batch_size // 2) // len(self.multiplier)
|
|
multiplier_tensor = multiplier_tensor.repeat_interleave(num_interleaves)
|
|
|
|
# match lora_up rank
|
|
if len(lora_up.size()) == 2:
|
|
multiplier_tensor = multiplier_tensor.view(-1, 1)
|
|
elif len(lora_up.size()) == 3:
|
|
multiplier_tensor = multiplier_tensor.view(-1, 1, 1)
|
|
elif len(lora_up.size()) == 4:
|
|
multiplier_tensor = multiplier_tensor.view(-1, 1, 1, 1)
|
|
return multiplier_tensor.detach()
|
|
|
|
else:
|
|
return self.multiplier
|
|
|
|
def _call_forward(self: Module, x):
|
|
# module dropout
|
|
if self.module_dropout is not None and self.training:
|
|
if torch.rand(1) < self.module_dropout:
|
|
return 0.0 # added to original forward
|
|
|
|
if hasattr(self, 'lora_mid') and hasattr(self, 'cp') and self.cp:
|
|
lx = self.lora_mid(self.lora_down(x))
|
|
else:
|
|
try:
|
|
lx = self.lora_down(x)
|
|
except RuntimeError as e:
|
|
print(f"Error in {self.__class__.__name__} lora_down")
|
|
|
|
if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity):
|
|
lx = self.dropout(lx)
|
|
# normal dropout
|
|
elif self.dropout is not None and self.training:
|
|
lx = torch.nn.functional.dropout(lx, p=self.dropout)
|
|
|
|
# rank dropout
|
|
if self.rank_dropout is not None and self.rank_dropout > 0 and self.training:
|
|
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
|
|
if len(lx.size()) == 3:
|
|
mask = mask.unsqueeze(1) # for Text Encoder
|
|
elif len(lx.size()) == 4:
|
|
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
|
|
lx = lx * mask
|
|
|
|
# scaling for rank dropout: treat as if the rank is changed
|
|
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
|
|
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
|
|
else:
|
|
scale = self.scale
|
|
|
|
lx = self.lora_up(lx)
|
|
|
|
# handle trainable scaler method locon does
|
|
if hasattr(self, 'scalar'):
|
|
scale *= self.scalar
|
|
|
|
return lx * scale
|
|
|
|
def forward(self: Module, x):
|
|
org_forwarded = self.org_forward(x)
|
|
lora_output = self._call_forward(x)
|
|
multiplier = self.get_multiplier(lora_output)
|
|
|
|
if self.is_normalizing:
|
|
with torch.no_grad():
|
|
|
|
# do this calculation without set multiplier and instead use same polarity, but with 1.0 multiplier
|
|
if isinstance(multiplier, torch.Tensor):
|
|
norm_multiplier = multiplier.clone().detach() * 10
|
|
norm_multiplier = norm_multiplier.clamp(min=-1.0, max=1.0)
|
|
else:
|
|
norm_multiplier = multiplier
|
|
|
|
# get a dim array from orig forward that had index of all dimensions except the batch and channel
|
|
|
|
# Calculate the target magnitude for the combined output
|
|
orig_max = torch.max(torch.abs(org_forwarded))
|
|
|
|
# Calculate the additional increase in magnitude that lora_output would introduce
|
|
potential_max_increase = torch.max(
|
|
torch.abs(org_forwarded + lora_output * norm_multiplier) - torch.abs(org_forwarded))
|
|
|
|
epsilon = 1e-6 # Small constant to avoid division by zero
|
|
|
|
# Calculate the scaling factor for the lora_output
|
|
# to ensure that the potential increase in magnitude doesn't change the original max
|
|
normalize_scaler = orig_max / (orig_max + potential_max_increase + epsilon)
|
|
normalize_scaler = normalize_scaler.detach()
|
|
|
|
# save the scaler so it can be applied later
|
|
self.normalize_scaler = normalize_scaler.clone().detach()
|
|
|
|
lora_output *= normalize_scaler
|
|
|
|
return org_forwarded + (lora_output * multiplier)
|
|
|
|
def enable_gradient_checkpointing(self: Module):
|
|
self.is_checkpointing = True
|
|
|
|
def disable_gradient_checkpointing(self: Module):
|
|
self.is_checkpointing = False
|
|
|
|
@torch.no_grad()
|
|
def apply_stored_normalizer(self: Module, target_normalize_scaler: float = 1.0):
|
|
"""
|
|
Applied the previous normalization calculation to the module.
|
|
This must be called before saving or normalization will be lost.
|
|
It is probably best to call after each batch as well.
|
|
We just scale the up down weights to match this vector
|
|
:return:
|
|
"""
|
|
# get state dict
|
|
state_dict = self.state_dict()
|
|
dtype = state_dict['lora_up.weight'].dtype
|
|
device = state_dict['lora_up.weight'].device
|
|
|
|
# todo should we do this at fp32?
|
|
if isinstance(self.normalize_scaler, torch.Tensor):
|
|
scaler = self.normalize_scaler.clone().detach()
|
|
else:
|
|
scaler = torch.tensor(self.normalize_scaler).to(device, dtype=dtype)
|
|
|
|
total_module_scale = scaler / target_normalize_scaler
|
|
num_modules_layers = 2 # up and down
|
|
up_down_scale = torch.pow(total_module_scale, 1.0 / num_modules_layers) \
|
|
.to(device, dtype=dtype)
|
|
|
|
# apply the scaler to the up and down weights
|
|
for key in state_dict.keys():
|
|
if key.endswith('.lora_up.weight') or key.endswith('.lora_down.weight'):
|
|
# do it inplace do params are updated
|
|
state_dict[key] *= up_down_scale
|
|
|
|
# reset the normalization scaler
|
|
self.normalize_scaler = target_normalize_scaler
|
|
|
|
|
|
class ToolkitNetworkMixin:
|
|
def __init__(
|
|
self: Network,
|
|
*args,
|
|
train_text_encoder: Optional[bool] = True,
|
|
train_unet: Optional[bool] = True,
|
|
is_sdxl=False,
|
|
is_v2=False,
|
|
**kwargs
|
|
):
|
|
self.train_text_encoder = train_text_encoder
|
|
self.train_unet = train_unet
|
|
self.is_checkpointing = False
|
|
self._multiplier: float = 1.0
|
|
self.is_active: bool = False
|
|
self._is_normalizing: bool = False
|
|
self.is_sdxl = is_sdxl
|
|
self.is_v2 = is_v2
|
|
# super().__init__(*args, **kwargs)
|
|
|
|
def get_keymap(self: Network):
|
|
if self.is_sdxl:
|
|
keymap_tail = 'sdxl'
|
|
elif self.is_v2:
|
|
keymap_tail = 'sd2'
|
|
else:
|
|
keymap_tail = 'sd1'
|
|
# load keymap
|
|
keymap_name = f"stable_diffusion_locon_{keymap_tail}.json"
|
|
keymap_path = os.path.join(KEYMAPS_ROOT, keymap_name)
|
|
|
|
keymap = None
|
|
# check if file exists
|
|
if os.path.exists(keymap_path):
|
|
with open(keymap_path, 'r') as f:
|
|
keymap = json.load(f)['ldm_diffusers_keymap']
|
|
|
|
return keymap
|
|
|
|
def save_weights(self: Network, file, dtype=torch.float16, metadata=None):
|
|
keymap = self.get_keymap()
|
|
|
|
save_keymap = {}
|
|
if keymap is not None:
|
|
for ldm_key, diffusers_key in keymap.items():
|
|
# invert them
|
|
save_keymap[diffusers_key] = ldm_key
|
|
|
|
if metadata is not None and len(metadata) == 0:
|
|
metadata = None
|
|
|
|
state_dict = self.state_dict()
|
|
save_dict = OrderedDict()
|
|
|
|
for key in list(state_dict.keys()):
|
|
v = state_dict[key]
|
|
v = v.detach().clone().to("cpu").to(dtype)
|
|
save_key = save_keymap[key] if key in save_keymap else key
|
|
save_dict[save_key] = v
|
|
|
|
if metadata is None:
|
|
metadata = OrderedDict()
|
|
metadata = add_model_hash_to_meta(state_dict, metadata)
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import save_file
|
|
save_file(save_dict, file, metadata)
|
|
else:
|
|
torch.save(save_dict, file)
|
|
|
|
def load_weights(self: Network, file):
|
|
# allows us to save and load to and from ldm weights
|
|
keymap = self.get_keymap()
|
|
keymap = {} if keymap is None else keymap
|
|
|
|
if os.path.splitext(file)[1] == ".safetensors":
|
|
from safetensors.torch import load_file
|
|
|
|
weights_sd = load_file(file)
|
|
else:
|
|
weights_sd = torch.load(file, map_location="cpu")
|
|
|
|
load_sd = OrderedDict()
|
|
for key, value in weights_sd.items():
|
|
load_key = keymap[key] if key in keymap else key
|
|
load_sd[load_key] = value
|
|
|
|
info = self.load_state_dict(load_sd, False)
|
|
return info
|
|
|
|
@property
|
|
def multiplier(self) -> Union[float, List[float]]:
|
|
return self._multiplier
|
|
|
|
@multiplier.setter
|
|
def multiplier(self, value: Union[float, List[float]]):
|
|
self._multiplier = value
|
|
self._update_lora_multiplier()
|
|
|
|
def _update_lora_multiplier(self: Network):
|
|
if self.is_active:
|
|
if hasattr(self, 'unet_loras'):
|
|
for lora in self.unet_loras:
|
|
lora.multiplier = self._multiplier
|
|
if hasattr(self, 'text_encoder_loras'):
|
|
for lora in self.text_encoder_loras:
|
|
lora.multiplier = self._multiplier
|
|
else:
|
|
if hasattr(self, 'unet_loras'):
|
|
for lora in self.unet_loras:
|
|
lora.multiplier = 0
|
|
if hasattr(self, 'text_encoder_loras'):
|
|
for lora in self.text_encoder_loras:
|
|
lora.multiplier = 0
|
|
|
|
# called when the context manager is entered
|
|
# ie: with network:
|
|
def __enter__(self: Network):
|
|
self.is_active = True
|
|
self._update_lora_multiplier()
|
|
|
|
def __exit__(self: Network, exc_type, exc_value, tb):
|
|
self.is_active = False
|
|
self._update_lora_multiplier()
|
|
|
|
def force_to(self: Network, device, dtype):
|
|
self.to(device, dtype)
|
|
loras = []
|
|
if hasattr(self, 'unet_loras'):
|
|
loras += self.unet_loras
|
|
if hasattr(self, 'text_encoder_loras'):
|
|
loras += self.text_encoder_loras
|
|
for lora in loras:
|
|
lora.to(device, dtype)
|
|
|
|
def get_all_modules(self: Network):
|
|
loras = []
|
|
if hasattr(self, 'unet_loras'):
|
|
loras += self.unet_loras
|
|
if hasattr(self, 'text_encoder_loras'):
|
|
loras += self.text_encoder_loras
|
|
return loras
|
|
|
|
def _update_checkpointing(self: Network):
|
|
for module in self.get_all_modules():
|
|
if self.is_checkpointing:
|
|
module.enable_gradient_checkpointing()
|
|
else:
|
|
module.disable_gradient_checkpointing()
|
|
|
|
# def enable_gradient_checkpointing(self: Network):
|
|
# # not supported
|
|
# self.is_checkpointing = True
|
|
# self._update_checkpointing()
|
|
#
|
|
# def disable_gradient_checkpointing(self: Network):
|
|
# # not supported
|
|
# self.is_checkpointing = False
|
|
# self._update_checkpointing()
|
|
|
|
@property
|
|
def is_normalizing(self: Network) -> bool:
|
|
return self._is_normalizing
|
|
|
|
@is_normalizing.setter
|
|
def is_normalizing(self: Network, value: bool):
|
|
self._is_normalizing = value
|
|
for module in self.get_all_modules():
|
|
module.is_normalizing = self._is_normalizing
|
|
|
|
def apply_stored_normalizer(self: Network, target_normalize_scaler: float = 1.0):
|
|
for module in self.get_all_modules():
|
|
module.apply_stored_normalizer(target_normalize_scaler)
|