mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
429 lines
15 KiB
Python
429 lines
15 KiB
Python
# ref:
|
|
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
|
|
import time
|
|
from collections import OrderedDict
|
|
import os
|
|
|
|
from toolkit.config_modules import SliderConfig
|
|
from toolkit.paths import REPOS_ROOT
|
|
import sys
|
|
|
|
sys.path.append(REPOS_ROOT)
|
|
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
|
|
import gc
|
|
|
|
import torch
|
|
from leco import train_util, model_util
|
|
from leco.prompt_util import PromptEmbedsCache
|
|
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
|
|
|
|
|
|
class ACTION_TYPES_SLIDER:
|
|
ERASE_NEGATIVE = 0
|
|
ENHANCE_NEGATIVE = 1
|
|
|
|
|
|
def flush():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
|
|
class EncodedPromptPair:
|
|
def __init__(
|
|
self,
|
|
target_class,
|
|
positive,
|
|
negative,
|
|
neutral,
|
|
width=512,
|
|
height=512,
|
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
|
multiplier=1.0,
|
|
weight=1.0
|
|
):
|
|
self.target_class = target_class
|
|
self.positive = positive
|
|
self.negative = negative
|
|
self.neutral = neutral
|
|
self.width = width
|
|
self.height = height
|
|
self.action: int = action
|
|
self.multiplier = multiplier
|
|
self.weight = weight
|
|
|
|
|
|
class EncodedAnchor:
|
|
def __init__(
|
|
self,
|
|
prompt,
|
|
neg_prompt,
|
|
multiplier=1.0
|
|
):
|
|
self.prompt = prompt
|
|
self.neg_prompt = neg_prompt
|
|
self.multiplier = multiplier
|
|
|
|
|
|
class TrainSliderProcess(BaseSDTrainProcess):
|
|
def __init__(self, process_id: int, job, config: OrderedDict):
|
|
super().__init__(process_id, job, config)
|
|
self.step_num = 0
|
|
self.start_step = 0
|
|
self.device = self.get_conf('device', self.job.device)
|
|
self.device_torch = torch.device(self.device)
|
|
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
|
|
self.prompt_cache = PromptEmbedsCache()
|
|
self.prompt_pairs: list[EncodedPromptPair] = []
|
|
self.anchor_pairs: list[EncodedAnchor] = []
|
|
|
|
def before_model_load(self):
|
|
pass
|
|
|
|
def hook_before_train_loop(self):
|
|
cache = PromptEmbedsCache()
|
|
prompt_pairs: list[EncodedPromptPair] = []
|
|
|
|
# get encoded latents for our prompts
|
|
with torch.no_grad():
|
|
neutral = ""
|
|
for target in self.slider_config.targets:
|
|
for resolution in self.slider_config.resolutions:
|
|
width, height = resolution
|
|
# build the cache
|
|
for prompt in [
|
|
target.target_class,
|
|
target.positive,
|
|
target.negative,
|
|
neutral # empty neutral
|
|
]:
|
|
if cache[prompt] == None:
|
|
cache[prompt] = train_util.encode_prompts(
|
|
self.sd.tokenizer, self.sd.text_encoder, [prompt]
|
|
)
|
|
only_erase = len(target.positive.strip()) == 0
|
|
only_enhance = len(target.negative.strip()) == 0
|
|
|
|
both = not only_erase and not only_enhance
|
|
|
|
if only_erase and only_enhance:
|
|
raise ValueError("target must have at least one of positive or negative or both")
|
|
# for slider we need to have an enhancer, an eraser, and then
|
|
# an inverse with negative weights to balance the network
|
|
# if we don't do this, we will get different contrast and focus.
|
|
# we only perform actions of enhancing and erasing on the negative
|
|
# todo work on way to do all of this in one shot
|
|
|
|
if both or only_erase:
|
|
prompt_pairs += [
|
|
# erase standard
|
|
EncodedPromptPair(
|
|
target_class=cache[target.target_class],
|
|
positive=cache[target.positive],
|
|
negative=cache[target.negative],
|
|
neutral=cache[neutral],
|
|
width=width,
|
|
height=height,
|
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
|
multiplier=target.multiplier,
|
|
weight=target.weight
|
|
),
|
|
]
|
|
if both or only_enhance:
|
|
prompt_pairs += [
|
|
# enhance standard, swap pos neg
|
|
EncodedPromptPair(
|
|
target_class=cache[target.target_class],
|
|
positive=cache[target.negative],
|
|
negative=cache[target.positive],
|
|
neutral=cache[neutral],
|
|
width=width,
|
|
height=height,
|
|
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
|
multiplier=target.multiplier,
|
|
weight=target.weight
|
|
),
|
|
]
|
|
if both:
|
|
prompt_pairs += [
|
|
# erase inverted
|
|
EncodedPromptPair(
|
|
target_class=cache[target.target_class],
|
|
positive=cache[target.negative],
|
|
negative=cache[target.positive],
|
|
neutral=cache[neutral],
|
|
width=width,
|
|
height=height,
|
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
|
multiplier=target.multiplier * -1.0,
|
|
weight=target.weight
|
|
),
|
|
]
|
|
prompt_pairs += [
|
|
# enhance inverted
|
|
EncodedPromptPair(
|
|
target_class=cache[target.target_class],
|
|
positive=cache[target.positive],
|
|
negative=cache[target.negative],
|
|
neutral=cache[neutral],
|
|
width=width,
|
|
height=height,
|
|
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
|
multiplier=target.multiplier * -1.0,
|
|
weight=target.weight
|
|
),
|
|
]
|
|
|
|
# setup anchors
|
|
anchor_pairs = []
|
|
for anchor in self.slider_config.anchors:
|
|
# build the cache
|
|
for prompt in [
|
|
anchor.prompt,
|
|
anchor.neg_prompt # empty neutral
|
|
]:
|
|
if cache[prompt] == None:
|
|
cache[prompt] = train_util.encode_prompts(
|
|
self.sd.tokenizer, self.sd.text_encoder, [prompt]
|
|
)
|
|
|
|
anchor_pairs += [
|
|
EncodedAnchor(
|
|
prompt=cache[anchor.prompt],
|
|
neg_prompt=cache[anchor.neg_prompt],
|
|
multiplier=anchor.multiplier
|
|
)
|
|
]
|
|
|
|
# move to cpu to save vram
|
|
# We don't need text encoder anymore, but keep it on cpu for sampling
|
|
self.sd.text_encoder.to("cpu")
|
|
self.prompt_cache = cache
|
|
self.prompt_pairs = prompt_pairs
|
|
self.anchor_pairs = anchor_pairs
|
|
flush()
|
|
# end hook_before_train_loop
|
|
|
|
def hook_train_loop(self):
|
|
dtype = get_torch_dtype(self.train_config.dtype)
|
|
|
|
# get a random pair
|
|
prompt_pair: EncodedPromptPair = self.prompt_pairs[
|
|
torch.randint(0, len(self.prompt_pairs), (1,)).item()
|
|
]
|
|
|
|
height = prompt_pair.height
|
|
width = prompt_pair.width
|
|
target_class = prompt_pair.target_class
|
|
neutral = prompt_pair.neutral
|
|
negative = prompt_pair.negative
|
|
positive = prompt_pair.positive
|
|
weight = prompt_pair.weight
|
|
|
|
unet = self.sd.unet
|
|
noise_scheduler = self.sd.noise_scheduler
|
|
optimizer = self.optimizer
|
|
lr_scheduler = self.lr_scheduler
|
|
loss_function = torch.nn.MSELoss()
|
|
|
|
# set network multiplier
|
|
self.network.multiplier = prompt_pair.multiplier
|
|
|
|
with torch.no_grad():
|
|
self.sd.noise_scheduler.set_timesteps(
|
|
self.train_config.max_denoising_steps, device=self.device_torch
|
|
)
|
|
|
|
self.optimizer.zero_grad()
|
|
|
|
# ger a random number of steps
|
|
timesteps_to = torch.randint(
|
|
1, self.train_config.max_denoising_steps, (1,)
|
|
).item()
|
|
|
|
# get noise
|
|
noise = self.get_latent_noise(
|
|
pixel_height=height,
|
|
pixel_width=width,
|
|
).to(self.device_torch, dtype=dtype)
|
|
|
|
# get latents
|
|
latents = noise * self.sd.noise_scheduler.init_noise_sigma
|
|
latents = latents.to(self.device_torch, dtype=dtype)
|
|
|
|
with self.network:
|
|
assert self.network.is_active
|
|
denoised_latents = self.diffuse_some_steps(
|
|
latents, # pass simple noise latents
|
|
train_util.concat_embeddings(
|
|
positive, # unconditional
|
|
target_class, # target
|
|
self.train_config.batch_size,
|
|
),
|
|
start_timesteps=0,
|
|
total_timesteps=timesteps_to,
|
|
guidance_scale=3,
|
|
)
|
|
|
|
noise_scheduler.set_timesteps(1000)
|
|
|
|
current_timestep = noise_scheduler.timesteps[
|
|
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
|
|
]
|
|
|
|
# with network: 0 weight LoRA is enabled outside "with network:"
|
|
positive_latents = train_util.predict_noise( # positive_latents
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
positive, # unconditional
|
|
negative, # positive
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
neutral_latents = train_util.predict_noise(
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
positive, # unconditional
|
|
neutral, # neutral
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
unconditional_latents = train_util.predict_noise(
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
positive, # unconditional
|
|
positive, # unconditional
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
|
|
anchor_loss = None
|
|
if len(self.anchor_pairs) > 0:
|
|
# get a random anchor pair
|
|
anchor: EncodedAnchor = self.anchor_pairs[
|
|
torch.randint(0, len(self.anchor_pairs), (1,)).item()
|
|
]
|
|
with torch.no_grad():
|
|
anchor_target_noise = train_util.predict_noise(
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
anchor.prompt,
|
|
anchor.neg_prompt,
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
with self.network:
|
|
# anchor whatever weight prompt pair is using
|
|
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
|
|
self.network.multiplier = anchor.multiplier * pos_nem_mult
|
|
anchor_pred_noise = train_util.predict_noise(
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
anchor.prompt,
|
|
anchor.neg_prompt,
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
|
|
self.network.multiplier = prompt_pair.multiplier
|
|
|
|
with self.network:
|
|
self.network.multiplier = prompt_pair.multiplier
|
|
target_latents = train_util.predict_noise(
|
|
unet,
|
|
noise_scheduler,
|
|
current_timestep,
|
|
denoised_latents,
|
|
train_util.concat_embeddings(
|
|
positive, # unconditional
|
|
target_class, # target
|
|
self.train_config.batch_size,
|
|
),
|
|
guidance_scale=1,
|
|
).to("cpu", dtype=torch.float32)
|
|
|
|
# if self.logging_config.verbose:
|
|
# self.print("target_latents:", target_latents[0, 0, :5, :5])
|
|
|
|
positive_latents.requires_grad = False
|
|
neutral_latents.requires_grad = False
|
|
unconditional_latents.requires_grad = False
|
|
if len(self.anchor_pairs) > 0:
|
|
anchor_target_noise.requires_grad = False
|
|
anchor_loss = loss_function(
|
|
anchor_target_noise,
|
|
anchor_pred_noise,
|
|
)
|
|
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
|
|
guidance_scale = 1.0
|
|
|
|
offset = guidance_scale * (positive_latents - unconditional_latents)
|
|
|
|
offset_neutral = neutral_latents
|
|
if erase:
|
|
offset_neutral -= offset
|
|
else:
|
|
# enhance
|
|
offset_neutral += offset
|
|
|
|
loss = loss_function(
|
|
target_latents,
|
|
offset_neutral,
|
|
) * weight
|
|
|
|
loss_slide = loss.item()
|
|
|
|
if anchor_loss is not None:
|
|
loss += anchor_loss
|
|
|
|
loss_float = loss.item()
|
|
|
|
loss = loss.to(self.device_torch)
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
|
|
del (
|
|
positive_latents,
|
|
neutral_latents,
|
|
unconditional_latents,
|
|
target_latents,
|
|
latents,
|
|
)
|
|
flush()
|
|
|
|
# reset network
|
|
self.network.multiplier = 1.0
|
|
|
|
loss_dict = OrderedDict(
|
|
{'loss': loss_float},
|
|
)
|
|
if anchor_loss is not None:
|
|
loss_dict['sl_l'] = loss_slide
|
|
loss_dict['an_l'] = anchor_loss.item()
|
|
|
|
return loss_dict
|
|
# end hook_train_loop
|