mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-02-10 15:39:57 +00:00
329 lines
12 KiB
Python
329 lines
12 KiB
Python
from typing import Union, List, Optional, Dict, Any, Callable
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import FluxPipeline
|
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
|
from diffusers.utils import is_torch_xla_available
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
def prepare_latent_image_ids(batch_size, height, width, patch_size=2, max_offset=0):
|
|
"""
|
|
Generates positional embeddings for a latent image.
|
|
|
|
Args:
|
|
batch_size (int): The number of images in the batch.
|
|
height (int): The height of the image.
|
|
width (int): The width of the image.
|
|
patch_size (int, optional): The size of the patches. Defaults to 2.
|
|
max_offset (int, optional): The maximum random offset to apply. Defaults to 0.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor containing the positional embeddings.
|
|
"""
|
|
# the random pos embedding helps generalize to larger res without training at large res
|
|
# pos embedding for rope, 2d pos embedding, corner embedding and not center based
|
|
latent_image_ids = torch.zeros(height // patch_size, width // patch_size, 3)
|
|
|
|
# Add positional encodings
|
|
latent_image_ids[..., 1] = (
|
|
latent_image_ids[..., 1] + torch.arange(height // patch_size)[:, None]
|
|
)
|
|
latent_image_ids[..., 2] = (
|
|
latent_image_ids[..., 2] + torch.arange(width // patch_size)[None, :]
|
|
)
|
|
|
|
# Add random offset if specified
|
|
if max_offset > 0:
|
|
offset_y = torch.randint(0, max_offset + 1, (1,)).item()
|
|
offset_x = torch.randint(0, max_offset + 1, (1,)).item()
|
|
latent_image_ids[..., 1] += offset_y
|
|
latent_image_ids[..., 2] += offset_x
|
|
|
|
|
|
(
|
|
latent_image_id_height,
|
|
latent_image_id_width,
|
|
latent_image_id_channels,
|
|
) = latent_image_ids.shape
|
|
|
|
# Reshape for batch
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
|
latent_image_ids = latent_image_ids.reshape(
|
|
batch_size,
|
|
latent_image_id_height * latent_image_id_width,
|
|
latent_image_id_channels,
|
|
)
|
|
|
|
return latent_image_ids
|
|
|
|
|
|
class ChromaPipeline(FluxPipeline):
|
|
def __init__(
|
|
self,
|
|
scheduler,
|
|
vae,
|
|
text_encoder,
|
|
tokenizer,
|
|
text_encoder_2,
|
|
tokenizer_2,
|
|
transformer,
|
|
image_encoder = None,
|
|
feature_extractor = None,
|
|
is_radiance: bool = False,
|
|
):
|
|
super().__init__(
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer_2=tokenizer_2,
|
|
transformer=transformer,
|
|
image_encoder=image_encoder,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.is_radiance = is_radiance
|
|
self.vae_scale_factor = 8 if not is_radiance else 1
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
# VAE applies 8x compression on images but we must also account for packing which requires
|
|
# latent height and width to be divisible by 2.
|
|
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
|
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
|
|
|
shape = (batch_size, num_channels_latents, height, width)
|
|
|
|
if latents is not None:
|
|
latent_image_ids = prepare_latent_image_ids(
|
|
batch_size,
|
|
height,
|
|
width,
|
|
patch_size=2 if not self.is_radiance else 16
|
|
).to(device=device, dtype=dtype)
|
|
# latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
|
return latents.to(device=device, dtype=dtype), latent_image_ids
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
if not self.is_radiance:
|
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
|
|
|
# latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
|
latent_image_ids = prepare_latent_image_ids(
|
|
batch_size,
|
|
height,
|
|
width,
|
|
patch_size=2 if not self.is_radiance else 16
|
|
).to(device=device, dtype=dtype)
|
|
|
|
return latents, latent_image_ids
|
|
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 28,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 7.0,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator,
|
|
List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
prompt_attn_mask: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_attn_mask: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[
|
|
int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 512,
|
|
):
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
|
|
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=torch.bfloat16)
|
|
if guidance_scale > 1.00001:
|
|
negative_text_ids = torch.zeros(batch_size, negative_prompt_embeds.shape[1], 3).to(device=device, dtype=torch.bfloat16)
|
|
|
|
# 4. Prepare latent variables
|
|
num_channels_latents = 64 // 4
|
|
if self.is_radiance:
|
|
num_channels_latents = 3
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# extend img ids to match batch size
|
|
# latent_image_ids = latent_image_ids.unsqueeze(0)
|
|
# latent_image_ids = torch.cat([latent_image_ids] * batch_size, dim=0)
|
|
|
|
# 5. Prepare timesteps
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
|
image_seq_len = latents.shape[1]
|
|
mu = calculate_shift(
|
|
image_seq_len,
|
|
self.scheduler.config.base_image_seq_len,
|
|
self.scheduler.config.max_image_seq_len,
|
|
self.scheduler.config.base_shift,
|
|
self.scheduler.config.max_shift,
|
|
)
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
timesteps,
|
|
sigmas,
|
|
mu=mu,
|
|
)
|
|
num_warmup_steps = max(
|
|
len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
guidance = torch.full([1], 0, device=device, dtype=torch.float32)
|
|
guidance = guidance.expand(latents.shape[0])
|
|
|
|
# 6. Denoising loop
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
|
|
|
# handle guidance
|
|
|
|
noise_pred_text = self.transformer(
|
|
img=latents,
|
|
img_ids=latent_image_ids,
|
|
txt=prompt_embeds,
|
|
txt_ids=text_ids,
|
|
txt_mask=prompt_attn_mask, # todo add this
|
|
timesteps=timestep / 1000,
|
|
guidance=guidance
|
|
)
|
|
|
|
if guidance_scale > 1.00001:
|
|
noise_pred_uncond = self.transformer(
|
|
img=latents,
|
|
img_ids=latent_image_ids,
|
|
txt=negative_prompt_embeds,
|
|
txt_ids=negative_text_ids,
|
|
txt_mask=negative_prompt_attn_mask, # todo add this
|
|
timesteps=timestep / 1000,
|
|
guidance=guidance
|
|
)
|
|
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * \
|
|
(noise_pred_text - noise_pred_uncond)
|
|
|
|
else:
|
|
noise_pred = noise_pred_text
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(
|
|
self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop(
|
|
"prompt_embeds", prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
|
|
else:
|
|
if not self.is_radiance:
|
|
latents = self._unpack_latents(
|
|
latents, height, width, self.vae_scale_factor)
|
|
latents = (latents / self.vae.config.scaling_factor) + \
|
|
self.vae.config.shift_factor
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(
|
|
image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return FluxPipelineOutput(images=image)
|