Files
ai-toolkit/toolkit/models/control_lora_adapter.py
2025-03-24 13:17:47 -06:00

273 lines
11 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import inspect
import weakref
import torch
from typing import TYPE_CHECKING
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import FluxTransformer2DModel
# weakref
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
from toolkit.custom_adapter import CustomAdapter
# after each step we concat the control image with the latents
# latent_model_input = torch.cat([latents, control_image], dim=2)
# the x_embedder has a full rank lora to handle the additional channels
# this replaces the x_embedder with a full rank lora. on flux this is
# x_embedder(diffusers) or img_in(bfl)
# Flux
# img_in.lora_A.weight [128, 128]
# img_in.lora_B.bias [3072]
# img_in.lora_B.weight [3072, 128]
class ImgEmbedder(torch.nn.Module):
def __init__(
self,
adapter: 'ControlLoraAdapter',
orig_layer: torch.nn.Linear,
in_channels=64,
out_channels=3072
):
super().__init__()
# only do the weight for the new input. We combine with the original linear layer
init = torch.randn(out_channels, in_channels, device=orig_layer.weight.device, dtype=orig_layer.weight.dtype) * 0.01
self.weight = torch.nn.Parameter(init)
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.orig_layer_ref: weakref.ref = weakref.ref(orig_layer)
@classmethod
def from_model(
cls,
model: FluxTransformer2DModel,
adapter: 'ControlLoraAdapter',
num_control_images=1,
has_inpainting_input=False
):
if model.__class__.__name__ == 'FluxTransformer2DModel':
num_adapter_in_channels = model.x_embedder.in_features * num_control_images
if has_inpainting_input:
# inpainting has the mask before packing latents. it is normally 16 ch + 1ch mask
# packed it is 64ch + 4ch mask
# so we need to add 4 to the input channels
num_adapter_in_channels += 4
x_embedder: torch.nn.Linear = model.x_embedder
img_embedder = cls(
adapter,
orig_layer=x_embedder,
in_channels=num_adapter_in_channels,
out_channels=x_embedder.out_features,
)
# hijack the forward method
x_embedder._orig_ctrl_lora_forward = x_embedder.forward
x_embedder.forward = img_embedder.forward
# update the config of the transformer
model.config.in_channels = model.config.in_channels * (num_control_images + 1)
model.config["in_channels"] = model.config.in_channels
return img_embedder
else:
raise ValueError("Model not supported")
@property
def is_active(self):
return self.adapter_ref().is_active
def forward(self, x):
if not self.is_active:
# make sure lora is not active
if self.adapter_ref().control_lora is not None:
self.adapter_ref().control_lora.is_active = False
return self.orig_layer_ref()._orig_ctrl_lora_forward(x)
# make sure lora is active
if self.adapter_ref().control_lora is not None:
self.adapter_ref().control_lora.is_active = True
orig_device = x.device
orig_dtype = x.dtype
x = x.to(self.weight.device, dtype=self.weight.dtype)
orig_weight = self.orig_layer_ref().weight.data.detach()
orig_weight = orig_weight.to(self.weight.device, dtype=self.weight.dtype)
linear_weight = torch.cat([orig_weight, self.weight], dim=1)
bias = None
if self.orig_layer_ref().bias is not None:
bias = self.orig_layer_ref().bias.data.detach().to(self.weight.device, dtype=self.weight.dtype)
x = torch.nn.functional.linear(x, linear_weight, bias)
x = x.to(orig_device, dtype=orig_dtype)
return x
class ControlLoraAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
config: 'AdapterConfig',
train_config: 'TrainConfig'
):
super().__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref = weakref.ref(sd)
self.model_config: ModelConfig = sd.model_config
self.network_config = config.lora_config
self.train_config = train_config
self.device_torch = sd.device_torch
self.control_lora = None
if self.network_config is not None:
network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
if hasattr(sd, 'target_lora_modules'):
network_kwargs['target_lin_modules'] = self.sd.target_lora_modules
if 'ignore_if_contains' not in network_kwargs:
network_kwargs['ignore_if_contains'] = []
# always ignore x_embedder
network_kwargs['ignore_if_contains'].append('x_embedder')
self.control_lora = LoRASpecialNetwork(
text_encoder=sd.text_encoder,
unet=sd.unet,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.linear_alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=self.network_config.conv,
conv_alpha=self.network_config.conv_alpha,
is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
is_v2=self.model_config.is_v2,
is_v3=self.model_config.is_v3,
is_pixart=self.model_config.is_pixart,
is_auraflow=self.model_config.is_auraflow,
is_flux=self.model_config.is_flux,
is_lumina2=self.model_config.is_lumina2,
is_ssd=self.model_config.is_ssd,
is_vega=self.model_config.is_vega,
dropout=self.network_config.dropout,
use_text_encoder_1=self.model_config.use_text_encoder_1,
use_text_encoder_2=self.model_config.use_text_encoder_2,
use_bias=False,
is_lorm=False,
network_config=self.network_config,
network_type=self.network_config.type,
transformer_only=self.network_config.transformer_only,
is_transformer=sd.is_transformer,
base_model=sd,
**network_kwargs
)
self.control_lora.force_to(self.device_torch, dtype=torch.float32)
self.control_lora._update_torch_multiplier()
self.control_lora.apply_to(
sd.text_encoder,
sd.unet,
self.train_config.train_text_encoder,
self.train_config.train_unet
)
self.control_lora.can_merge_in = False
self.control_lora.prepare_grad_etc(sd.text_encoder, sd.unet)
if self.train_config.gradient_checkpointing:
self.control_lora.enable_gradient_checkpointing()
self.x_embedder = ImgEmbedder.from_model(
sd.unet,
self,
num_control_images=config.num_control_images,
has_inpainting_input=config.has_inpainting_input
)
self.x_embedder.to(self.device_torch)
def get_params(self):
if self.control_lora is not None:
config = {
'text_encoder_lr': self.train_config.lr,
'unet_lr': self.train_config.lr,
}
sig = inspect.signature(self.control_lora.prepare_optimizer_params)
if 'default_lr' in sig.parameters:
config['default_lr'] = self.train_config.lr
if 'learning_rate' in sig.parameters:
config['learning_rate'] = self.train_config.lr
params_net = self.control_lora.prepare_optimizer_params(
**config
)
# we want only tensors here
params = []
for p in params_net:
if isinstance(p, dict):
params += p["params"]
elif isinstance(p, torch.Tensor):
params.append(p)
elif isinstance(p, list):
params += p
else:
params = []
# make sure the embedder is float32
self.x_embedder.to(torch.float32)
params += list(self.x_embedder.parameters())
# we need to be able to yield from the list like yield from params
return params
def load_weights(self, state_dict, strict=True):
lora_sd = {}
img_embedder_sd = {}
for key, value in state_dict.items():
if "x_embedder" in key:
new_key = key.replace("transformer.x_embedder.", "")
img_embedder_sd[new_key] = value
else:
lora_sd[key] = value
# todo process state dict before loading
if self.control_lora is not None:
self.control_lora.load_weights(lora_sd)
# automatically upgrade the x imbedder if more dims are added
if self.x_embedder.weight.shape[1] > img_embedder_sd['weight'].shape[1]:
print("Upgrading x_embedder from {} to {}".format(
img_embedder_sd['weight'].shape[1],
self.x_embedder.weight.shape[1]
))
while img_embedder_sd['weight'].shape[1] < self.x_embedder.weight.shape[1]:
img_embedder_sd['weight'] = torch.cat([img_embedder_sd['weight'] ] * 2, dim=1)
if img_embedder_sd['weight'].shape[1] > self.x_embedder.weight.shape[1]:
img_embedder_sd['weight'] = img_embedder_sd['weight'][:, :self.x_embedder.weight.shape[1]]
self.x_embedder.load_state_dict(img_embedder_sd, strict=False)
def get_state_dict(self):
if self.control_lora is not None:
lora_sd = self.control_lora.get_state_dict(dtype=torch.float32)
else:
lora_sd = {}
# todo make sure we match loras elseware.
img_embedder_sd = self.x_embedder.state_dict()
for key, value in img_embedder_sd.items():
lora_sd[f"transformer.x_embedder.{key}"] = value
return lora_sd
@property
def is_active(self):
return self.adapter_ref().is_active