mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
158 lines
7.2 KiB
Python
158 lines
7.2 KiB
Python
import torch
|
|
import sys
|
|
|
|
from PIL import Image
|
|
from torch.nn import Parameter
|
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|
|
|
from toolkit.paths import REPOS_ROOT
|
|
from toolkit.train_tools import get_torch_dtype
|
|
|
|
sys.path.append(REPOS_ROOT)
|
|
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List
|
|
from collections import OrderedDict
|
|
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor
|
|
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
|
|
from ipadapter.ip_adapter.resampler import Resampler
|
|
from toolkit.config_modules import AdapterConfig
|
|
from toolkit.prompt_utils import PromptEmbeds
|
|
import weakref
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.stable_diffusion_model import StableDiffusion
|
|
|
|
|
|
# loosely based on # ref https://github.com/tencent-ailab/IP-Adapter/blob/main/tutorial_train.py
|
|
class IPAdapter(torch.nn.Module):
|
|
"""IP-Adapter"""
|
|
|
|
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
|
|
super().__init__()
|
|
self.config = adapter_config
|
|
self.sd_ref: weakref.ref = weakref.ref(sd)
|
|
self.clip_image_processor = CLIPImageProcessor()
|
|
self.device = self.sd_ref().unet.device
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(adapter_config.image_encoder_path)
|
|
if adapter_config.type == 'ip':
|
|
# ip-adapter
|
|
image_proj_model = ImageProjModel(
|
|
cross_attention_dim=sd.unet.config['cross_attention_dim'],
|
|
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
|
clip_extra_context_tokens=4,
|
|
)
|
|
elif adapter_config.type == 'ip+':
|
|
# ip-adapter-plus
|
|
num_tokens = 16
|
|
image_proj_model = Resampler(
|
|
dim=sd.unet.config['cross_attention_dim'],
|
|
depth=4,
|
|
dim_head=64,
|
|
heads=12,
|
|
num_queries=num_tokens,
|
|
embedding_dim=self.image_encoder.config.hidden_size,
|
|
output_dim=sd.unet.config['cross_attention_dim'],
|
|
ff_mult=4
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown adapter type: {adapter_config.type}")
|
|
|
|
# init adapter modules
|
|
attn_procs = {}
|
|
unet_sd = sd.unet.state_dict()
|
|
for name in sd.unet.attn_processors.keys():
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
|
|
if name.startswith("mid_block"):
|
|
hidden_size = sd.unet.config['block_out_channels'][-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = sd.unet.config['block_out_channels'][block_id]
|
|
else:
|
|
# they didnt have this, but would lead to undefined below
|
|
raise ValueError(f"unknown attn processor name: {name}")
|
|
if cross_attention_dim is None:
|
|
attn_procs[name] = AttnProcessor()
|
|
else:
|
|
layer_name = name.split(".processor")[0]
|
|
weights = {
|
|
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
|
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
|
}
|
|
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
|
|
attn_procs[name].load_state_dict(weights)
|
|
sd.unet.set_attn_processor(attn_procs)
|
|
adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
|
|
|
sd.adapter = self
|
|
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
|
|
self.image_proj_model = image_proj_model
|
|
self.adapter_modules = adapter_modules
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
self.image_encoder.to(*args, **kwargs)
|
|
self.image_proj_model.to(*args, **kwargs)
|
|
self.adapter_modules.to(*args, **kwargs)
|
|
return self
|
|
|
|
def load_ip_adapter(self, state_dict: Union[OrderedDict, dict]):
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
|
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
|
|
|
def state_dict(self) -> OrderedDict:
|
|
state_dict = OrderedDict()
|
|
state_dict["image_proj"] = self.image_proj_model.state_dict()
|
|
state_dict["ip_adapter"] = self.adapter_modules.state_dict()
|
|
return state_dict
|
|
|
|
def set_scale(self, scale):
|
|
for attn_processor in self.pipe.unet.attn_processors.values():
|
|
if isinstance(attn_processor, IPAttnProcessor):
|
|
attn_processor.scale = scale
|
|
|
|
@torch.no_grad()
|
|
def get_clip_image_embeds_from_pil(self, pil_image: Union[Image.Image, List[Image.Image]], drop=False) -> torch.Tensor:
|
|
# todo: add support for sdxl
|
|
if isinstance(pil_image, Image.Image):
|
|
pil_image = [pil_image]
|
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
|
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
|
if drop:
|
|
clip_image = clip_image * 0
|
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
|
return clip_image_embeds
|
|
|
|
@torch.no_grad()
|
|
def get_clip_image_embeds_from_tensors(self, tensors_0_1: torch.Tensor, drop=False) -> torch.Tensor:
|
|
# tensors should be 0-1
|
|
# todo: add support for sdxl
|
|
if tensors_0_1.ndim == 3:
|
|
tensors_0_1 = tensors_0_1.unsqueeze(0)
|
|
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
|
|
clip_image = self.clip_image_processor(images=tensors_0_1, return_tensors="pt", do_resize=False).pixel_values
|
|
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
|
if drop:
|
|
clip_image = clip_image * 0
|
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
|
return clip_image_embeds
|
|
|
|
# use drop for prompt dropout, or negatives
|
|
def forward(self, embeddings: PromptEmbeds, clip_image_embeds: torch.Tensor) -> PromptEmbeds:
|
|
clip_image_embeds = clip_image_embeds.detach()
|
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
|
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds.detach())
|
|
embeddings.text_embeds = torch.cat([embeddings.text_embeds, image_prompt_embeds], dim=1)
|
|
return embeddings
|
|
|
|
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
for attn_processor in self.adapter_modules:
|
|
yield from attn_processor.parameters(recurse)
|
|
yield from self.image_proj_model.parameters(recurse)
|
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
|
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
|
|
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=strict)
|