mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
1421 lines
69 KiB
Python
1421 lines
69 KiB
Python
import importlib
|
|
import inspect
|
|
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler, FluxPipeline
|
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_k_diffusion import ModelWrapper
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
|
from diffusers.utils import is_torch_xla_available
|
|
from k_diffusion.external import CompVisVDenoiser, CompVisDenoiser
|
|
from k_diffusion.sampling import get_sigmas_karras, BrownianTreeNoiseSampler
|
|
from toolkit.models.flux import bypass_flux_guidance, restore_flux_guidance
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
class StableDiffusionKDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
|
|
def __init__(
|
|
self,
|
|
vae: 'AutoencoderKL',
|
|
text_encoder: 'CLIPTextModel',
|
|
text_encoder_2: 'CLIPTextModelWithProjection',
|
|
tokenizer: 'CLIPTokenizer',
|
|
tokenizer_2: 'CLIPTokenizer',
|
|
unet: 'UNet2DConditionModel',
|
|
scheduler: 'KarrasDiffusionSchedulers',
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None,
|
|
):
|
|
super().__init__(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
)
|
|
raise NotImplementedError("This pipeline is not implemented yet")
|
|
# self.sampler = None
|
|
# scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
|
# model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
|
# if scheduler.config.prediction_type == "v_prediction":
|
|
# self.k_diffusion_model = CompVisVDenoiser(model)
|
|
# else:
|
|
# self.k_diffusion_model = CompVisDenoiser(model)
|
|
|
|
def set_scheduler(self, scheduler_type: str):
|
|
library = importlib.import_module("k_diffusion")
|
|
sampling = getattr(library, "sampling")
|
|
self.sampler = getattr(sampling, scheduler_type)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
use_karras_sigmas: bool = False,
|
|
):
|
|
|
|
# 0. Default height and width to unet
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Prepare added time ids & embeddings
|
|
add_text_embeds = pooled_prompt_embeds
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
|
)
|
|
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
# 7.1 Apply denoising_end
|
|
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
# 5. Prepare sigmas
|
|
if use_karras_sigmas:
|
|
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
|
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
|
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
|
sigmas = sigmas.to(device)
|
|
else:
|
|
sigmas = self.scheduler.sigmas
|
|
sigmas = sigmas.to(prompt_embeds.dtype)
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
latents = latents * sigmas[0]
|
|
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
|
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
|
|
|
# 7. Define model function
|
|
def model_fn(x, t):
|
|
latent_model_input = torch.cat([x] * 2)
|
|
t = torch.cat([t] * 2)
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
# noise_pred = self.unet(
|
|
# latent_model_input,
|
|
# t,
|
|
# encoder_hidden_states=prompt_embeds,
|
|
# cross_attention_kwargs=cross_attention_kwargs,
|
|
# added_cond_kwargs=added_cond_kwargs,
|
|
# return_dict=False,
|
|
# )[0]
|
|
|
|
noise_pred = self.k_diffusion_model(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,)[0]
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
return noise_pred
|
|
|
|
|
|
# 8. Run k-diffusion solver
|
|
sampler_kwargs = {}
|
|
# should work without it
|
|
noise_sampler_seed = None
|
|
|
|
|
|
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
|
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
|
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
|
sampler_kwargs["noise_sampler"] = noise_sampler
|
|
|
|
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
|
|
|
def predict_noise(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
timestep: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
|
of a plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
# if not predict_noise:
|
|
# # call parent
|
|
# return super().__call__(
|
|
# prompt=prompt,
|
|
# prompt_2=prompt_2,
|
|
# height=height,
|
|
# width=width,
|
|
# num_inference_steps=num_inference_steps,
|
|
# denoising_end=denoising_end,
|
|
# guidance_scale=guidance_scale,
|
|
# negative_prompt=negative_prompt,
|
|
# negative_prompt_2=negative_prompt_2,
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
# eta=eta,
|
|
# generator=generator,
|
|
# latents=latents,
|
|
# prompt_embeds=prompt_embeds,
|
|
# negative_prompt_embeds=negative_prompt_embeds,
|
|
# pooled_prompt_embeds=pooled_prompt_embeds,
|
|
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
# output_type=output_type,
|
|
# return_dict=return_dict,
|
|
# callback=callback,
|
|
# callback_steps=callback_steps,
|
|
# cross_attention_kwargs=cross_attention_kwargs,
|
|
# guidance_rescale=guidance_rescale,
|
|
# original_size=original_size,
|
|
# crops_coords_top_left=crops_coords_top_left,
|
|
# target_size=target_size,
|
|
# )
|
|
|
|
# 0. Default height and width to unet
|
|
height = self.default_sample_size * self.vae_scale_factor
|
|
width = self.default_sample_size * self.vae_scale_factor
|
|
|
|
original_size = (height, width)
|
|
target_size = (height, width)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 7. Prepare added time ids & embeddings
|
|
add_text_embeds = pooled_prompt_embeds
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
|
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
|
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
|
|
|
# predict the noise residual
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
timestep,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
return noise_pred
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0):
|
|
print('Called cpu offload', gpu_id)
|
|
# fuck off
|
|
pass
|
|
|
|
|
|
class CustomStableDiffusionPipeline(StableDiffusionPipeline):
|
|
|
|
# replace the call so it matches SDXL call so we can use the same code and also stop early
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
):
|
|
# 0. Default height and width to unet
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
# 7.1 Apply denoising_end
|
|
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
# some of the inputs are to keep it compatible with sdx
|
|
def predict_noise(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
timestep: Optional[int] = None,
|
|
):
|
|
|
|
# 0. Default height and width to unet
|
|
height = self.unet.config.sample_size * self.vae_scale_factor
|
|
width = self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
timestep,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
return noise_pred
|
|
|
|
|
|
class StableDiffusionXLRefinerPipeline(StableDiffusionXLPipeline):
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
denoising_end: Optional[float] = None,
|
|
denoising_start: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
negative_original_size: Optional[Tuple[int, int]] = None,
|
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
negative_target_size: Optional[Tuple[int, int]] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
|
denoising_start (`float`, *optional*):
|
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
|
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
|
of a plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a target image resolution. It should be as same
|
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
# 0. Default height and width to unet
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
clip_skip=clip_skip,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Prepare added time ids & embeddings
|
|
add_text_embeds = pooled_prompt_embeds
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
if negative_original_size is not None and negative_target_size is not None:
|
|
negative_add_time_ids = self._get_add_time_ids(
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
else:
|
|
negative_add_time_ids = add_time_ids
|
|
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
# 8.1 Apply denoising_end
|
|
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
# 8.2 Determine denoising_start
|
|
denoising_start_index = 0
|
|
if denoising_start is not None and isinstance(denoising_start, float) and denoising_start > 0 and denoising_start < 1:
|
|
discrete_timestep_start = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
denoising_start_index = len(list(filter(lambda ts: ts < discrete_timestep_start, timesteps)))
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps - denoising_start_index) as progress_bar:
|
|
for i, t in enumerate(timesteps, start=denoising_start_index):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if not output_type == "latent":
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
|
# cast back to fp16 if needed
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
else:
|
|
image = latents
|
|
|
|
if not output_type == "latent":
|
|
# apply watermark if available
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
# TODO this is rough. Need to properly stack unconditional
|
|
class FluxWithCFGPipeline(FluxPipeline):
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 28,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 7.0,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 512,
|
|
):
|
|
# bypass the guidance embedding if there is one
|
|
bypass_flux_guidance(self.transformer)
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
lora_scale = (
|
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
text_ids,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
(
|
|
negative_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
negative_text_ids,
|
|
) = self.encode_prompt(
|
|
prompt=negative_prompt,
|
|
prompt_2=negative_prompt_2,
|
|
prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
|
|
# 4. Prepare latent variables
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 5. Prepare timesteps
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
|
image_seq_len = latents.shape[1]
|
|
mu = calculate_shift(
|
|
image_seq_len,
|
|
self.scheduler.config.base_image_seq_len,
|
|
self.scheduler.config.max_image_seq_len,
|
|
self.scheduler.config.base_shift,
|
|
self.scheduler.config.max_shift,
|
|
)
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
timesteps,
|
|
sigmas,
|
|
mu=mu,
|
|
)
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 6. Denoising loop
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
|
|
|
# handle guidance
|
|
if self.transformer.config.guidance_embeds:
|
|
guidance = torch.tensor([guidance_scale], device=device)
|
|
guidance = guidance.expand(latents.shape[0])
|
|
else:
|
|
guidance = None
|
|
|
|
noise_pred_text = self.transformer(
|
|
hidden_states=latents,
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=pooled_prompt_embeds,
|
|
encoder_hidden_states=prompt_embeds,
|
|
txt_ids=text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# todo combine these
|
|
noise_pred_uncond = self.transformer(
|
|
hidden_states=latents,
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=negative_pooled_prompt_embeds,
|
|
encoder_hidden_states=negative_prompt_embeds,
|
|
txt_ids=negative_text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
|
|
else:
|
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
restore_flux_guidance(self.transformer)
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return FluxPipelineOutput(images=image) |