Files
ai-toolkit/jobs/process/BaseSDTrainProcess.py
Jaret Burkett 9cdf2dd6e4 Bug fixes
2023-07-29 13:39:57 -06:00

700 lines
26 KiB
Python

import glob
import time
from collections import OrderedDict
import os
import diffusers
from safetensors import safe_open
from library import sdxl_train_util, sdxl_model_util
from toolkit.kohya_model_util import load_vae
from toolkit.lora_special import LoRASpecialNetwork
from toolkit.optimizer import get_optimizer
from toolkit.paths import REPOS_ROOT
import sys
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, DDPMScheduler
from jobs.process import BaseTrainProcess
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
import torch
from tqdm import tqdm
from leco import train_util, model_util
from toolkit.config_modules import SaveConfig, LogingConfig, SampleConfig, NetworkConfig, TrainConfig, ModelConfig
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
def flush():
torch.cuda.empty_cache()
gc.collect()
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
class BaseSDTrainProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.network_config = NetworkConfig(**self.get_conf('network', None))
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
self.train_config = TrainConfig(**self.get_conf('train', {}))
self.model_config = ModelConfig(**self.get_conf('model', {}))
self.save_config = SaveConfig(**self.get_conf('save', {}))
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
self.first_sample_config = SampleConfig(
**self.get_conf('first_sample', {})) if 'first_sample' in self.config else self.sample_config
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
self.optimizer = None
self.lr_scheduler = None
self.sd: 'StableDiffusion' = None
# sdxl stuff
self.logit_scale = None
self.ckppt_info = None
# added later
self.network = None
def sample(self, step=None, is_first=False):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
if self.network is not None:
self.network.eval()
# save current seed state for training
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
original_device_dict = {
'vae': self.sd.vae.device,
'unet': self.sd.unet.device,
# 'tokenizer': self.sd.tokenizer.device,
}
# handle sdxl text encoder
if isinstance(self.sd.text_encoder, list):
for encoder, i in zip(self.sd.text_encoder, range(len(self.sd.text_encoder))):
original_device_dict[f'text_encoder_{i}'] = encoder.device
encoder.to(self.device_torch)
else:
original_device_dict['text_encoder'] = self.sd.text_encoder.device
self.sd.text_encoder.to(self.device_torch)
self.sd.vae.to(self.device_torch)
self.sd.unet.to(self.device_torch)
# self.sd.text_encoder.to(self.device_torch)
# self.sd.tokenizer.to(self.device_torch)
# TODO add clip skip
if self.sd.is_xl:
pipeline = StableDiffusionXLPipeline(
vae=self.sd.vae,
unet=self.sd.unet,
text_encoder=self.sd.text_encoder[0],
text_encoder_2=self.sd.text_encoder[1],
tokenizer=self.sd.tokenizer[0],
tokenizer_2=self.sd.tokenizer[1],
scheduler=self.sd.noise_scheduler,
)
else:
pipeline = StableDiffusionPipeline(
vae=self.sd.vae,
unet=self.sd.unet,
text_encoder=self.sd.text_encoder,
tokenizer=self.sd.tokenizer,
scheduler=self.sd.noise_scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
# disable progress bar
pipeline.set_progress_bar_config(disable=True)
sample_config = self.first_sample_config if is_first else self.sample_config
start_seed = sample_config.seed
start_multiplier = self.network.multiplier
current_seed = start_seed
pipeline.to(self.device_torch)
with self.network:
with torch.no_grad():
if self.network is not None:
assert self.network.is_active
if self.logging_config.verbose:
print("network_state", {
'is_active': self.network.is_active,
'multiplier': self.network.multiplier,
})
for i in tqdm(range(len(sample_config.prompts)), desc=f"Generating Samples - step: {step}",
leave=False):
raw_prompt = sample_config.prompts[i]
neg = sample_config.neg
multiplier = sample_config.network_multiplier
p_split = raw_prompt.split('--')
prompt = p_split[0].strip()
height = sample_config.height
width = sample_config.width
if len(p_split) > 1:
for split in p_split:
flag = split[:1]
content = split[1:].strip()
if flag == 'n':
neg = content
elif flag == 'm':
# multiplier
multiplier = float(content)
elif flag == 'w':
# multiplier
width = int(content)
elif flag == 'h':
# multiplier
height = int(content)
height = max(64, height - height % 8) # round to divisible by 8
width = max(64, width - width % 8) # round to divisible by 8
if sample_config.walk_seed:
current_seed += i
if self.network is not None:
self.network.multiplier = multiplier
torch.manual_seed(current_seed)
torch.cuda.manual_seed(current_seed)
if self.sd.is_xl:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
else:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zero-pad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
output_path = os.path.join(sample_folder, filename)
img.save(output_path)
# clear pipeline and cache to reduce vram usage
del pipeline
torch.cuda.empty_cache()
# restore training state
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
self.sd.vae.to(original_device_dict['vae'])
self.sd.unet.to(original_device_dict['unet'])
if isinstance(self.sd.text_encoder, list):
for encoder, i in zip(self.sd.text_encoder, range(len(self.sd.text_encoder))):
encoder.to(original_device_dict[f'text_encoder_{i}'])
else:
self.sd.text_encoder.to(original_device_dict['text_encoder'])
if self.network is not None:
self.network.train()
self.network.multiplier = start_multiplier
# self.sd.tokenizer.to(original_device_dict['tokenizer'])
def update_training_metadata(self):
dict = OrderedDict({
"training_info": self.get_training_info()
})
if self.model_config.is_v2:
dict['ss_v2'] = True
if self.model_config.is_xl:
dict['ss_base_model_version'] = 'sdxl_1.0'
dict['ss_output_name'] = self.job.name
self.add_meta(dict)
def get_training_info(self):
info = OrderedDict({
'step': self.step_num + 1
})
return info
def clean_up_saves(self):
# remove old saves
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors but NOT {job_name}.safetensors
pattern = f"{self.job.name}_*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > self.save_config.max_step_saves_to_keep:
# remove all but the latest max_step_saves_to_keep
files.sort(key=os.path.getctime)
for file in files[:-self.save_config.max_step_saves_to_keep]:
self.print(f"Removing old save: {file}")
os.remove(file)
return latest_file
else:
return None
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
filename = f'{self.job.name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
if self.network is not None:
prev_multiplier = self.network.multiplier
self.network.multiplier = 1.0
# TODO handle dreambooth, fine tuning, etc
self.network.save_weights(
file_path,
dtype=get_torch_dtype(self.save_config.dtype),
metadata=save_meta
)
self.network.multiplier = prev_multiplier
else:
self.sd.save(
file_path,
save_meta,
get_torch_dtype(self.save_config.dtype)
)
self.print(f"Saved to {file_path}")
# Called before the model is loaded
def hook_before_model_load(self):
# override in subclass
pass
def hook_add_extra_train_params(self, params):
# override in subclass
return params
def hook_before_train_loop(self):
pass
def get_latent_noise(
self,
height=None,
width=None,
pixel_height=None,
pixel_width=None,
):
if height is None and pixel_height is None:
raise ValueError("height or pixel_height must be specified")
raise ValueError("height or pixel_height must be specified")
if width is None and pixel_width is None:
raise ValueError("width or pixel_width must be specified")
if height is None:
height = pixel_height // VAE_SCALE_FACTOR
if width is None:
width = pixel_width // VAE_SCALE_FACTOR
noise = torch.randn(
(
self.train_config.batch_size,
UNET_IN_CHANNELS,
height,
width,
),
device="cpu",
)
noise = apply_noise_offset(noise, self.train_config.noise_offset)
return noise
def hook_train_loop(self):
# return loss
return 0.0
def get_time_ids_from_latents(self, latents):
bs, ch, h, w = list(latents.shape)
height = h * VAE_SCALE_FACTOR
width = w * VAE_SCALE_FACTOR
dtype = get_torch_dtype(self.train_config.dtype)
if self.sd.is_xl:
prompt_ids = train_util.get_add_time_ids(
height,
width,
dynamic_crops=False, # look into this
dtype=dtype,
).to(self.device_torch, dtype=dtype)
return train_util.concat_embeddings(
prompt_ids, prompt_ids, bs
)
else:
return None
def predict_noise(
self,
latents: torch.FloatTensor,
text_embeddings: PromptEmbeds,
timestep: int,
guidance_scale=7.5,
guidance_rescale=0.7,
add_time_ids=None,
**kwargs,
):
if self.sd.is_xl:
if add_time_ids is None:
add_time_ids = self.get_time_ids_from_latents(latents)
# todo LECOs code looks like it is omitting noise_pred
# noise_pred = train_util.predict_noise_xl(
# self.sd.unet,
# self.sd.noise_scheduler,
# timestep,
# latents,
# text_embeddings.text_embeds,
# text_embeddings.pooled_embeds,
# add_time_ids,
# guidance_scale=guidance_scale,
# guidance_rescale=guidance_rescale
# )
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.sd.noise_scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
"text_embeds": text_embeddings.pooled_embeds,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = self.sd.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings.text_embeds,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
# noise_pred = rescale_noise_cfg(
# noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
# )
noise_pred = guided_target
else:
noise_pred = train_util.predict_noise(
self.sd.unet,
self.sd.noise_scheduler,
timestep,
latents,
text_embeddings.text_embeds if hasattr(text_embeddings, 'text_embeds') else text_embeddings,
guidance_scale=guidance_scale
)
return noise_pred
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
def diffuse_some_steps(
self,
latents: torch.FloatTensor,
text_embeddings: PromptEmbeds,
total_timesteps: int = 1000,
start_timesteps=0,
guidance_scale=1,
add_time_ids=None,
**kwargs,
):
for timestep in tqdm(self.sd.noise_scheduler.timesteps[start_timesteps:total_timesteps], leave=False):
noise_pred = self.predict_noise(
latents,
text_embeddings,
timestep,
guidance_scale=guidance_scale,
add_time_ids=add_time_ids,
**kwargs,
)
latents = self.sd.noise_scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
def get_latest_save_path(self):
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors or {job_name}.safetensors
pattern = f"{self.job.name}*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > 0:
latest_file = max(files, key=os.path.getctime)
return latest_file
else:
return None
def load_weights(self, path):
if self.network is not None:
self.network.load_weights(path)
meta = load_metadata_from_safetensors(path)
# if 'training_info' in Orderdict keys
if 'training_info' in meta and 'step' in meta['training_info']:
self.step_num = meta['training_info']['step']
self.start_step = self.step_num
print(f"Found step {self.step_num} in metadata, starting from there")
else:
print("load_weights not implemented for non-network models")
def run(self):
super().run()
### HOOK ###
self.hook_before_model_load()
dtype = get_torch_dtype(self.train_config.dtype)
if self.model_config.is_xl:
pipe = StableDiffusionXLPipeline.from_single_file(
self.model_config.name_or_path,
dtype=dtype,
scheduler_type='pndm',
device=self.device_torch
)
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
unet = pipe.unet
noise_scheduler = pipe.scheduler
vae = pipe.vae.to('cpu', dtype=dtype)
vae.eval()
vae.set_use_memory_efficient_attention_xformers(True)
for text_encoder in text_encoders:
text_encoder.to(self.device_torch, dtype=dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
text_encoder = text_encoders
tokenizer = tokenizer
del pipe
flush()
else:
tokenizer, text_encoder, unet, noise_scheduler = model_util.load_models(
self.model_config.name_or_path,
scheduler_name=self.train_config.noise_scheduler,
v2=self.model_config.is_v2,
v_pred=self.model_config.is_v_pred,
)
text_encoder.to(self.device_torch, dtype=dtype)
text_encoder.eval()
vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
vae.eval()
flush()
# just for now or of we want to load a custom one
# put on cpu for now, we only need it when sampling
# vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
# vae.eval()
self.sd = StableDiffusion(vae, tokenizer, text_encoder, unet, noise_scheduler, is_xl=self.model_config.is_xl)
unet.to(self.device_torch, dtype=dtype)
if self.train_config.xformers:
unet.enable_xformers_memory_efficient_attention()
if self.train_config.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet.requires_grad_(False)
unet.eval()
if self.network_config is not None:
conv = self.network_config.conv if self.network_config.conv is not None and self.network_config.conv > 0 else None
self.network = LoRASpecialNetwork(
text_encoder=text_encoder,
unet=unet,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=conv,
conv_alpha=self.network_config.alpha if conv is not None else None,
)
self.network.force_to(self.device_torch, dtype=dtype)
self.network.apply_to(
text_encoder,
unet,
self.train_config.train_text_encoder,
self.train_config.train_unet
)
self.network.prepare_grad_etc(text_encoder, unet)
params = self.network.prepare_optimizer_params(
text_encoder_lr=self.train_config.lr,
unet_lr=self.train_config.lr,
default_lr=self.train_config.lr
)
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
self.print(f"Loading from {latest_save_path}")
self.load_weights(latest_save_path)
self.network.multiplier = 1.0
else:
params = []
# assume dreambooth/finetune
if self.train_config.train_text_encoder:
text_encoder.requires_grad_(True)
text_encoder.train()
params += text_encoder.parameters()
if self.train_config.train_unet:
unet.requires_grad_(True)
unet.train()
params += unet.parameters()
### HOOK ###
params = self.hook_add_extra_train_params(params)
optimizer_type = self.train_config.optimizer.lower()
optimizer = get_optimizer(params, optimizer_type, learning_rate=self.train_config.lr,
optimizer_params=self.train_config.optimizer_params)
self.optimizer = optimizer
lr_scheduler = train_util.get_lr_scheduler(
self.train_config.lr_scheduler,
optimizer,
max_iterations=self.train_config.steps,
lr_min=self.train_config.lr / 100, # not sure why leco did this, but ill do it to
)
self.lr_scheduler = lr_scheduler
### HOOK ###
self.hook_before_train_loop()
# sample first
if self.train_config.skip_first_sample:
self.print("Skipping first sample due to config setting")
else:
self.print("Generating baseline samples before training")
self.sample(0, is_first=True)
self.progress_bar = tqdm(
total=self.train_config.steps,
desc=self.job.name,
leave=True
)
# set it to our current step in case it was updated from a load
self.progress_bar.update(self.step_num)
# self.step_num = 0
for step in range(self.step_num, self.train_config.steps):
# todo handle dataloader here maybe, not sure
### HOOK ###
loss_dict = self.hook_train_loop()
if self.train_config.optimizer.lower().startswith('dadaptation'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
prog_bar_string = f"lr: {learning_rate:.1e}"
for key, value in loss_dict.items():
prog_bar_string += f" {key}: {value:.3e}"
self.progress_bar.set_postfix_str(prog_bar_string)
# don't do on first step
if self.step_num != self.start_step:
# pause progress bar
self.progress_bar.unpause() # makes it so doesn't track time
if self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0:
# print above the progress bar
self.sample(self.step_num)
if self.save_config.save_every and self.step_num % self.save_config.save_every == 0:
# print above the progress bar
self.print(f"Saving at step {self.step_num}")
self.save(self.step_num)
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
# log to tensorboard
if self.writer is not None:
for key, value in loss_dict.items():
self.writer.add_scalar(f"{key}", value, self.step_num)
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
self.progress_bar.refresh()
# sets progress bar to match out step
self.progress_bar.update(step - self.progress_bar.n)
# end of step
self.step_num = step
self.sample(self.step_num + 1)
print("")
self.save()
del (
self.sd,
unet,
noise_scheduler,
optimizer,
self.network,
tokenizer,
text_encoder,
)
flush()