mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
192 lines
6.9 KiB
Python
192 lines
6.9 KiB
Python
from functools import partial
|
|
import sys
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import weakref
|
|
from typing import Any, Dict, List, Optional, Tuple, Union, TYPE_CHECKING
|
|
|
|
from diffusers.models.transformers.transformer_flux import FluxTransformerBlock
|
|
from transformers import AutoModel, AutoTokenizer, Qwen2Model, LlamaModel, Qwen2Tokenizer, LlamaTokenizer
|
|
|
|
from toolkit import train_tools
|
|
from toolkit.prompt_utils import PromptEmbeds
|
|
from diffusers import Transformer2DModel
|
|
from toolkit.dequantize import patch_dequantization_on_save
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.stable_diffusion_model import StableDiffusion, PixArtSigmaPipeline
|
|
from toolkit.custom_adapter import CustomAdapter
|
|
|
|
LLM = Union[Qwen2Model, LlamaModel]
|
|
LLMTokenizer = Union[Qwen2Tokenizer, LlamaTokenizer]
|
|
|
|
|
|
def new_context_embedder_forward(self, x):
|
|
if self._adapter_ref().is_active:
|
|
x = self._context_embedder_ref()(x)
|
|
else:
|
|
x = self._orig_forward(x)
|
|
return x
|
|
|
|
def new_block_forward(
|
|
self: FluxTransformerBlock,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
temb: torch.Tensor,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if self._adapter_ref().is_active:
|
|
return self._new_block_ref()(hidden_states, encoder_hidden_states, temb, image_rotary_emb, joint_attention_kwargs)
|
|
else:
|
|
return self._orig_forward(hidden_states, encoder_hidden_states, temb, image_rotary_emb, joint_attention_kwargs)
|
|
|
|
|
|
class LLMAdapter(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
adapter: 'CustomAdapter',
|
|
sd: 'StableDiffusion',
|
|
llm: LLM,
|
|
tokenizer: LLMTokenizer,
|
|
num_cloned_blocks: int = 0,
|
|
):
|
|
super(LLMAdapter, self).__init__()
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
|
self.sd_ref: weakref.ref = weakref.ref(sd)
|
|
self.llm_ref: weakref.ref = weakref.ref(llm)
|
|
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
|
|
self.num_cloned_blocks = num_cloned_blocks
|
|
self.apply_embedding_mask = False
|
|
# make sure we can pad
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
self.system_prompt = ""
|
|
# self.system_prompt = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts. <Prompt Start> "
|
|
|
|
# determine length of system prompt
|
|
sys_prompt_tokenized = tokenizer(
|
|
[self.system_prompt],
|
|
padding="longest",
|
|
return_tensors="pt",
|
|
)
|
|
|
|
sys_prompt_tokenized_ids = sys_prompt_tokenized.input_ids[0]
|
|
|
|
self.system_prompt_length = sys_prompt_tokenized_ids.shape[0]
|
|
|
|
print(f"System prompt length: {self.system_prompt_length}")
|
|
|
|
self.hidden_size = llm.config.hidden_size
|
|
|
|
blocks = []
|
|
|
|
if sd.is_flux:
|
|
self.apply_embedding_mask = True
|
|
self.context_embedder = nn.Linear(
|
|
self.hidden_size, sd.unet.inner_dim)
|
|
self.sequence_length = 512
|
|
sd.unet.context_embedder._orig_forward = sd.unet.context_embedder.forward
|
|
sd.unet.context_embedder.forward = partial(
|
|
new_context_embedder_forward, sd.unet.context_embedder)
|
|
sd.unet.context_embedder._context_embedder_ref = weakref.ref(self.context_embedder)
|
|
# add a is active property to the context embedder
|
|
sd.unet.context_embedder._adapter_ref = self.adapter_ref
|
|
|
|
for idx in range(self.num_cloned_blocks):
|
|
block = FluxTransformerBlock(
|
|
dim=sd.unet.inner_dim,
|
|
num_attention_heads=24,
|
|
attention_head_dim=128,
|
|
)
|
|
# patch it in case it is quantized
|
|
patch_dequantization_on_save(sd.unet.transformer_blocks[idx])
|
|
state_dict = sd.unet.transformer_blocks[idx].state_dict()
|
|
for key, value in state_dict.items():
|
|
block.state_dict()[key].copy_(value)
|
|
blocks.append(block)
|
|
orig_block = sd.unet.transformer_blocks[idx]
|
|
orig_block._orig_forward = orig_block.forward
|
|
orig_block.forward = partial(
|
|
new_block_forward, orig_block)
|
|
orig_block._new_block_ref = weakref.ref(block)
|
|
orig_block._adapter_ref = self.adapter_ref
|
|
|
|
elif sd.is_lumina2:
|
|
self.context_embedder = nn.Linear(
|
|
self.hidden_size, sd.unet.hidden_size)
|
|
self.sequence_length = 256
|
|
else:
|
|
raise ValueError(
|
|
"llm adapter currently only supports flux or lumina2")
|
|
|
|
self.blocks = nn.ModuleList(blocks)
|
|
|
|
def _get_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
max_sequence_length: int = 256,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
tokenizer = self.tokenizer_ref()
|
|
text_encoder = self.llm_ref()
|
|
device = text_encoder.device
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=max_sequence_length + self.system_prompt_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids.to(device)
|
|
prompt_attention_mask = text_inputs.attention_mask.to(device)
|
|
|
|
# remove the system prompt from the input and attention mask
|
|
|
|
prompt_embeds = text_encoder(
|
|
text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
|
|
)
|
|
prompt_embeds = prompt_embeds.hidden_states[-1]
|
|
|
|
prompt_embeds = prompt_embeds[:, self.system_prompt_length:]
|
|
prompt_attention_mask = prompt_attention_mask[:, self.system_prompt_length:]
|
|
|
|
dtype = text_encoder.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
return prompt_embeds, prompt_attention_mask
|
|
|
|
# make a getter to see if is active
|
|
|
|
@property
|
|
def is_active(self):
|
|
return self.adapter_ref().is_active
|
|
|
|
def encode_text(self, prompt):
|
|
|
|
prompt = prompt if isinstance(prompt, list) else [prompt]
|
|
|
|
prompt = [self.system_prompt + p for p in prompt]
|
|
# prompt = [self.system_prompt + p for p in prompt]
|
|
|
|
prompt_embeds, prompt_attention_mask = self._get_prompt_embeds(
|
|
prompt=prompt,
|
|
max_sequence_length=self.sequence_length,
|
|
)
|
|
|
|
prompt_embeds = PromptEmbeds(
|
|
prompt_embeds,
|
|
attention_mask=prompt_attention_mask,
|
|
).detach()
|
|
|
|
return prompt_embeds
|
|
|
|
def forward(self, input):
|
|
return input
|