mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
866 lines
30 KiB
Python
866 lines
30 KiB
Python
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.accelerate_utils import apply_forward_hook
|
|
from diffusers.models.activations import get_activation
|
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
|
import copy
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
CACHE_T = 2
|
|
|
|
|
|
class WanCausalConv3d(nn.Conv3d):
|
|
r"""
|
|
A custom 3D causal convolution layer with feature caching support.
|
|
|
|
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
|
|
caching for efficient inference.
|
|
|
|
Args:
|
|
in_channels (int): Number of channels in the input image
|
|
out_channels (int): Number of channels produced by the convolution
|
|
kernel_size (int or tuple): Size of the convolving kernel
|
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
|
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, Tuple[int, int, int]],
|
|
stride: Union[int, Tuple[int, int, int]] = 1,
|
|
padding: Union[int, Tuple[int, int, int]] = 0,
|
|
) -> None:
|
|
super().__init__(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
)
|
|
|
|
# Set up causal padding
|
|
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
|
|
self.padding = (0, 0, 0)
|
|
|
|
def forward(self, x, cache_x=None):
|
|
padding = list(self._padding)
|
|
if cache_x is not None and self._padding[4] > 0:
|
|
cache_x = cache_x.to(x.device)
|
|
x = torch.cat([cache_x, x], dim=2)
|
|
padding[4] -= cache_x.shape[2]
|
|
x = F.pad(x, padding)
|
|
return super().forward(x)
|
|
|
|
|
|
class WanRMS_norm(nn.Module):
|
|
r"""
|
|
A custom RMS normalization layer.
|
|
|
|
Args:
|
|
dim (int): The number of dimensions to normalize over.
|
|
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
|
|
Default is True.
|
|
images (bool, optional): Whether the input represents image data. Default is True.
|
|
bias (bool, optional): Whether to include a learnable bias term. Default is False.
|
|
"""
|
|
|
|
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
|
|
super().__init__()
|
|
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
|
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
|
|
|
self.channel_first = channel_first
|
|
self.scale = dim**0.5
|
|
self.gamma = nn.Parameter(torch.ones(shape))
|
|
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
|
|
|
def forward(self, x):
|
|
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
|
|
|
|
|
class WanUpsample(nn.Upsample):
|
|
r"""
|
|
Perform upsampling while ensuring the output tensor has the same data type as the input.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor to be upsampled.
|
|
|
|
Returns:
|
|
torch.Tensor: Upsampled tensor with the same data type as the input.
|
|
"""
|
|
|
|
def forward(self, x):
|
|
return super().forward(x.float()).type_as(x)
|
|
|
|
|
|
class WanResample(nn.Module):
|
|
r"""
|
|
A custom resampling module for 2D and 3D data.
|
|
|
|
Args:
|
|
dim (int): The number of input/output channels.
|
|
mode (str): The resampling mode. Must be one of:
|
|
- 'none': No resampling (identity operation).
|
|
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
|
|
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
|
|
- 'downsample2d': 2D downsampling with zero-padding and convolution.
|
|
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
|
|
"""
|
|
|
|
def __init__(self, dim: int, mode: str) -> None:
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.mode = mode
|
|
|
|
# layers
|
|
if mode == "upsample2d":
|
|
self.resample = nn.Sequential(
|
|
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
|
)
|
|
elif mode == "upsample3d":
|
|
self.resample = nn.Sequential(
|
|
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
|
)
|
|
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
|
|
|
elif mode == "downsample2d":
|
|
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
|
elif mode == "downsample3d":
|
|
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
|
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
|
|
|
else:
|
|
self.resample = nn.Identity()
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
b, c, t, h, w = x.size()
|
|
if self.mode == "upsample3d":
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
if feat_cache[idx] is None:
|
|
feat_cache[idx] = "Rep"
|
|
feat_idx[0] += 1
|
|
else:
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
|
|
# cache last frame of last two chunk
|
|
cache_x = torch.cat(
|
|
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
|
|
)
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
|
|
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
|
if feat_cache[idx] == "Rep":
|
|
x = self.time_conv(x)
|
|
else:
|
|
x = self.time_conv(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
|
|
x = x.reshape(b, 2, c, t, h, w)
|
|
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
|
x = x.reshape(b, c, t * 2, h, w)
|
|
t = x.shape[2]
|
|
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
|
x = self.resample(x)
|
|
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
|
|
|
|
if self.mode == "downsample3d":
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
if feat_cache[idx] is None:
|
|
feat_cache[idx] = x.clone()
|
|
feat_idx[0] += 1
|
|
else:
|
|
cache_x = x[:, :, -1:, :, :].clone()
|
|
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
return x
|
|
|
|
|
|
class WanResidualBlock(nn.Module):
|
|
r"""
|
|
A custom residual block module.
|
|
|
|
Args:
|
|
in_dim (int): Number of input channels.
|
|
out_dim (int): Number of output channels.
|
|
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
|
|
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_dim: int,
|
|
out_dim: int,
|
|
dropout: float = 0.0,
|
|
non_linearity: str = "silu",
|
|
) -> None:
|
|
super().__init__()
|
|
self.in_dim = in_dim
|
|
self.out_dim = out_dim
|
|
self.nonlinearity = get_activation(non_linearity)
|
|
|
|
# layers
|
|
self.norm1 = WanRMS_norm(in_dim, images=False)
|
|
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
|
|
self.norm2 = WanRMS_norm(out_dim, images=False)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
|
|
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
# Apply shortcut connection
|
|
h = self.conv_shortcut(x)
|
|
|
|
# First normalization and activation
|
|
x = self.norm1(x)
|
|
x = self.nonlinearity(x)
|
|
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
|
|
x = self.conv1(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv1(x)
|
|
|
|
# Second normalization and activation
|
|
x = self.norm2(x)
|
|
x = self.nonlinearity(x)
|
|
|
|
# Dropout
|
|
x = self.dropout(x)
|
|
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
|
|
x = self.conv2(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv2(x)
|
|
|
|
# Add residual connection
|
|
return x + h
|
|
|
|
|
|
class WanAttentionBlock(nn.Module):
|
|
r"""
|
|
Causal self-attention with a single head.
|
|
|
|
Args:
|
|
dim (int): The number of channels in the input tensor.
|
|
"""
|
|
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
# layers
|
|
self.norm = WanRMS_norm(dim)
|
|
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
|
self.proj = nn.Conv2d(dim, dim, 1)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
batch_size, channels, time, height, width = x.size()
|
|
|
|
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
|
|
x = self.norm(x)
|
|
|
|
# compute query, key, value
|
|
qkv = self.to_qkv(x)
|
|
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
|
|
qkv = qkv.permute(0, 1, 3, 2).contiguous()
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
# apply attention
|
|
x = F.scaled_dot_product_attention(q, k, v)
|
|
|
|
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
|
|
|
|
# output projection
|
|
x = self.proj(x)
|
|
|
|
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
|
|
x = x.view(batch_size, time, channels, height, width)
|
|
x = x.permute(0, 2, 1, 3, 4)
|
|
|
|
return x + identity
|
|
|
|
|
|
class WanMidBlock(nn.Module):
|
|
"""
|
|
Middle block for WanVAE encoder and decoder.
|
|
|
|
Args:
|
|
dim (int): Number of input/output channels.
|
|
dropout (float): Dropout rate.
|
|
non_linearity (str): Type of non-linearity to use.
|
|
"""
|
|
|
|
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
# Create the components
|
|
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
|
|
attentions = []
|
|
for _ in range(num_layers):
|
|
attentions.append(WanAttentionBlock(dim))
|
|
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
# First residual block
|
|
x = self.resnets[0](x, feat_cache, feat_idx)
|
|
|
|
# Process through attention and residual blocks
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
if attn is not None:
|
|
x = attn(x)
|
|
|
|
x = resnet(x, feat_cache, feat_idx)
|
|
|
|
return x
|
|
|
|
|
|
class WanEncoder3d(nn.Module):
|
|
r"""
|
|
A 3D encoder module.
|
|
|
|
Args:
|
|
dim (int): The base number of channels in the first layer.
|
|
z_dim (int): The dimensionality of the latent space.
|
|
dim_mult (list of int): Multipliers for the number of channels in each block.
|
|
num_res_blocks (int): Number of residual blocks in each block.
|
|
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
|
temperal_downsample (list of bool): Whether to downsample temporally in each block.
|
|
dropout (float): Dropout rate for the dropout layers.
|
|
non_linearity (str): Type of non-linearity to use.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim=128,
|
|
z_dim=4,
|
|
dim_mult=[1, 2, 4, 4],
|
|
num_res_blocks=2,
|
|
attn_scales=[],
|
|
temperal_downsample=[True, True, False],
|
|
dropout=0.0,
|
|
non_linearity: str = "silu",
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.z_dim = z_dim
|
|
self.dim_mult = dim_mult
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attn_scales = attn_scales
|
|
self.temperal_downsample = temperal_downsample
|
|
self.nonlinearity = get_activation(non_linearity)
|
|
|
|
# dimensions
|
|
dims = [dim * u for u in [1] + dim_mult]
|
|
scale = 1.0
|
|
|
|
# init block
|
|
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
|
|
|
|
# downsample blocks
|
|
self.down_blocks = nn.ModuleList([])
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
|
# residual (+attention) blocks
|
|
for _ in range(num_res_blocks):
|
|
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
|
|
if scale in attn_scales:
|
|
self.down_blocks.append(WanAttentionBlock(out_dim))
|
|
in_dim = out_dim
|
|
|
|
# downsample block
|
|
if i != len(dim_mult) - 1:
|
|
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
|
|
self.down_blocks.append(WanResample(out_dim, mode=mode))
|
|
scale /= 2.0
|
|
|
|
# middle blocks
|
|
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
|
|
|
|
# output blocks
|
|
self.norm_out = WanRMS_norm(out_dim, images=False)
|
|
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
# cache last frame of last two chunk
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
x = self.conv_in(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv_in(x)
|
|
|
|
## downsamples
|
|
for layer in self.down_blocks:
|
|
if feat_cache is not None:
|
|
x = layer(x, feat_cache, feat_idx)
|
|
else:
|
|
x = layer(x)
|
|
|
|
## middle
|
|
x = self.mid_block(x, feat_cache, feat_idx)
|
|
|
|
## head
|
|
x = self.norm_out(x)
|
|
x = self.nonlinearity(x)
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
# cache last frame of last two chunk
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
x = self.conv_out(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv_out(x)
|
|
return x
|
|
|
|
|
|
class WanUpBlock(nn.Module):
|
|
"""
|
|
A block that handles upsampling for the WanVAE decoder.
|
|
|
|
Args:
|
|
in_dim (int): Input dimension
|
|
out_dim (int): Output dimension
|
|
num_res_blocks (int): Number of residual blocks
|
|
dropout (float): Dropout rate
|
|
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
|
|
non_linearity (str): Type of non-linearity to use
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_dim: int,
|
|
out_dim: int,
|
|
num_res_blocks: int,
|
|
dropout: float = 0.0,
|
|
upsample_mode: Optional[str] = None,
|
|
non_linearity: str = "silu",
|
|
):
|
|
super().__init__()
|
|
self.in_dim = in_dim
|
|
self.out_dim = out_dim
|
|
|
|
# Create layers list
|
|
resnets = []
|
|
# Add residual blocks and attention if needed
|
|
current_dim = in_dim
|
|
for _ in range(num_res_blocks + 1):
|
|
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
|
current_dim = out_dim
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
# Add upsampling layer if needed
|
|
self.upsamplers = None
|
|
if upsample_mode is not None:
|
|
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
"""
|
|
Forward pass through the upsampling block.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor
|
|
feat_cache (list, optional): Feature cache for causal convolutions
|
|
feat_idx (list, optional): Feature index for cache management
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor
|
|
"""
|
|
for resnet in self.resnets:
|
|
if feat_cache is not None:
|
|
x = resnet(x, feat_cache, feat_idx)
|
|
else:
|
|
x = resnet(x)
|
|
|
|
if self.upsamplers is not None:
|
|
if feat_cache is not None:
|
|
x = self.upsamplers[0](x, feat_cache, feat_idx)
|
|
else:
|
|
x = self.upsamplers[0](x)
|
|
return x
|
|
|
|
|
|
class WanDecoder3d(nn.Module):
|
|
r"""
|
|
A 3D decoder module.
|
|
|
|
Args:
|
|
dim (int): The base number of channels in the first layer.
|
|
z_dim (int): The dimensionality of the latent space.
|
|
dim_mult (list of int): Multipliers for the number of channels in each block.
|
|
num_res_blocks (int): Number of residual blocks in each block.
|
|
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
|
temperal_upsample (list of bool): Whether to upsample temporally in each block.
|
|
dropout (float): Dropout rate for the dropout layers.
|
|
non_linearity (str): Type of non-linearity to use.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim=128,
|
|
z_dim=4,
|
|
dim_mult=[1, 2, 4, 4],
|
|
num_res_blocks=2,
|
|
attn_scales=[],
|
|
temperal_upsample=[False, True, True],
|
|
dropout=0.0,
|
|
non_linearity: str = "silu",
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.z_dim = z_dim
|
|
self.dim_mult = dim_mult
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attn_scales = attn_scales
|
|
self.temperal_upsample = temperal_upsample
|
|
|
|
self.nonlinearity = get_activation(non_linearity)
|
|
|
|
# dimensions
|
|
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
|
scale = 1.0 / 2 ** (len(dim_mult) - 2)
|
|
|
|
# init block
|
|
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
|
|
|
|
# middle blocks
|
|
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
|
|
|
|
# upsample blocks
|
|
self.up_blocks = nn.ModuleList([])
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
|
# residual (+attention) blocks
|
|
if i > 0:
|
|
in_dim = in_dim // 2
|
|
|
|
# Determine if we need upsampling
|
|
upsample_mode = None
|
|
if i != len(dim_mult) - 1:
|
|
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
|
|
|
|
# Create and add the upsampling block
|
|
up_block = WanUpBlock(
|
|
in_dim=in_dim,
|
|
out_dim=out_dim,
|
|
num_res_blocks=num_res_blocks,
|
|
dropout=dropout,
|
|
upsample_mode=upsample_mode,
|
|
non_linearity=non_linearity,
|
|
)
|
|
self.up_blocks.append(up_block)
|
|
|
|
# Update scale for next iteration
|
|
if upsample_mode is not None:
|
|
scale *= 2.0
|
|
|
|
# output blocks
|
|
self.norm_out = WanRMS_norm(out_dim, images=False)
|
|
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
|
## conv1
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
# cache last frame of last two chunk
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
x = self.conv_in(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv_in(x)
|
|
|
|
## middle
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
|
# middle
|
|
x = self._gradient_checkpointing_func(self.mid_block, x, feat_cache, feat_idx)
|
|
|
|
## upsamples
|
|
for up_block in self.up_blocks:
|
|
x = self._gradient_checkpointing_func(up_block, x, feat_cache, feat_idx)
|
|
|
|
else:
|
|
x = self.mid_block(x, feat_cache, feat_idx)
|
|
|
|
## upsamples
|
|
for up_block in self.up_blocks:
|
|
x = up_block(x, feat_cache, feat_idx)
|
|
|
|
## head
|
|
x = self.norm_out(x)
|
|
x = self.nonlinearity(x)
|
|
if feat_cache is not None:
|
|
idx = feat_idx[0]
|
|
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
|
# cache last frame of last two chunk
|
|
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
|
x = self.conv_out(x, feat_cache[idx])
|
|
feat_cache[idx] = cache_x
|
|
feat_idx[0] += 1
|
|
else:
|
|
x = self.conv_out(x)
|
|
return x
|
|
|
|
|
|
class AutoencoderKLWan(ModelMixin, ConfigMixin):
|
|
r"""
|
|
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
|
Introduced in [Wan 2.1].
|
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
|
for all models (such as downloading or saving).
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
base_dim: int = 96,
|
|
z_dim: int = 16,
|
|
dim_mult: Tuple[int] = [1, 2, 4, 4],
|
|
num_res_blocks: int = 2,
|
|
attn_scales: List[float] = [],
|
|
temperal_downsample: List[bool] = [False, True, True],
|
|
dropout: float = 0.0,
|
|
latents_mean: List[float] = [
|
|
-0.7571,
|
|
-0.7089,
|
|
-0.9113,
|
|
0.1075,
|
|
-0.1745,
|
|
0.9653,
|
|
-0.1517,
|
|
1.5508,
|
|
0.4134,
|
|
-0.0715,
|
|
0.5517,
|
|
-0.3632,
|
|
-0.1922,
|
|
-0.9497,
|
|
0.2503,
|
|
-0.2921,
|
|
],
|
|
latents_std: List[float] = [
|
|
2.8184,
|
|
1.4541,
|
|
2.3275,
|
|
2.6558,
|
|
1.2196,
|
|
1.7708,
|
|
2.6052,
|
|
2.0743,
|
|
3.2687,
|
|
2.1526,
|
|
2.8652,
|
|
1.5579,
|
|
1.6382,
|
|
1.1253,
|
|
2.8251,
|
|
1.9160,
|
|
],
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.z_dim = z_dim
|
|
self.temperal_downsample = temperal_downsample
|
|
self.temperal_upsample = temperal_downsample[::-1]
|
|
|
|
self.encoder = WanEncoder3d(
|
|
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
|
|
)
|
|
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
|
|
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
|
|
|
|
self.decoder = WanDecoder3d(
|
|
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
|
|
)
|
|
|
|
def clear_cache(self):
|
|
def _count_conv3d(model):
|
|
count = 0
|
|
for m in model.modules():
|
|
if isinstance(m, WanCausalConv3d):
|
|
count += 1
|
|
return count
|
|
|
|
self._conv_num = _count_conv3d(self.decoder)
|
|
self._conv_idx = [0]
|
|
self._feat_map = [None] * self._conv_num
|
|
# cache encode
|
|
self._enc_conv_num = _count_conv3d(self.encoder)
|
|
self._enc_conv_idx = [0]
|
|
self._enc_feat_map = [None] * self._enc_conv_num
|
|
|
|
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
|
self.clear_cache()
|
|
## cache
|
|
t = x.shape[2]
|
|
iter_ = 1 + (t - 1) // 4
|
|
for i in range(iter_):
|
|
self._enc_conv_idx = [0]
|
|
if i == 0:
|
|
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
|
else:
|
|
out_ = self.encoder(
|
|
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
|
|
feat_cache=self._enc_feat_map,
|
|
feat_idx=self._enc_conv_idx,
|
|
)
|
|
out = torch.cat([out, out_], 2)
|
|
|
|
enc = self.quant_conv(out)
|
|
mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :]
|
|
enc = torch.cat([mu, logvar], dim=1)
|
|
self.clear_cache()
|
|
return enc
|
|
|
|
@apply_forward_hook
|
|
def encode(
|
|
self, x: torch.Tensor, return_dict: bool = True
|
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
|
r"""
|
|
Encode a batch of images into latents.
|
|
|
|
Args:
|
|
x (`torch.Tensor`): Input batch of images.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
The latent representations of the encoded videos. If `return_dict` is True, a
|
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
|
"""
|
|
h = self._encode(x)
|
|
posterior = DiagonalGaussianDistribution(h)
|
|
if not return_dict:
|
|
return (posterior,)
|
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
|
|
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
|
self.clear_cache()
|
|
|
|
iter_ = z.shape[2]
|
|
x = self.post_quant_conv(z)
|
|
for i in range(iter_):
|
|
|
|
self._conv_idx = [0]
|
|
if i == 0:
|
|
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
|
else:
|
|
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
|
out = torch.cat([out, out_], 2)
|
|
|
|
out = torch.clamp(out, min=-1.0, max=1.0)
|
|
self.clear_cache()
|
|
if not return_dict:
|
|
return (out,)
|
|
|
|
return DecoderOutput(sample=out)
|
|
|
|
@apply_forward_hook
|
|
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
|
r"""
|
|
Decode a batch of images.
|
|
|
|
Args:
|
|
z (`torch.Tensor`): Input batch of latent vectors.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~models.vae.DecoderOutput`] or `tuple`:
|
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
|
returned.
|
|
"""
|
|
decoded = self._decode(z).sample
|
|
if not return_dict:
|
|
return (decoded,)
|
|
|
|
return DecoderOutput(sample=decoded)
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.Tensor,
|
|
sample_posterior: bool = False,
|
|
return_dict: bool = True,
|
|
generator: Optional[torch.Generator] = None,
|
|
) -> Union[DecoderOutput, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
sample (`torch.Tensor`): Input sample.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
|
"""
|
|
x = sample
|
|
posterior = self.encode(x).latent_dist
|
|
if sample_posterior:
|
|
z = posterior.sample(generator=generator)
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z, return_dict=return_dict)
|
|
return dec
|