Files
ai-toolkit/jobs/process/TrainSliderProcess.py
2023-07-29 19:30:14 -06:00

535 lines
22 KiB
Python

# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import random
import time
from collections import OrderedDict
import os
from typing import Optional
from safetensors.torch import save_file, load_file
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.paths import REPOS_ROOT
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from leco import train_util, model_util
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
def flush():
torch.cuda.empty_cache()
gc.collect()
class EncodedPromptPair:
def __init__(
self,
target_class,
target_class_with_neutral,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
both_targets,
empty_prompt,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
):
self.target_class = target_class
self.target_class_with_neutral = target_class_with_neutral
self.positive_target = positive_target
self.positive_target_with_neutral = positive_target_with_neutral
self.negative_target = negative_target
self.negative_target_with_neutral = negative_target_with_neutral
self.neutral = neutral
self.empty_prompt = empty_prompt
self.both_targets = both_targets
self.multiplier = multiplier
self.action: int = action
self.weight = weight
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.target_class = self.target_class.to(*args, **kwargs)
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
class TrainSliderProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
# read line by line from file
with open(self.slider_config.prompt_file, 'r') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
cache = PromptEmbedsCache()
if not self.slider_config.prompt_tensors:
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
# get encoded latents for our prompts
with torch.no_grad():
if self.slider_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.slider_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.target_class} {neutral}", # target_class with neutral
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets
]
for p in prompt_list:
# build the cache
if cache[p] is None:
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
both = not erase_negative and not enhance_positive
if erase_negative and enhance_positive:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if self.slider_config.prompt_tensors:
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
dtype=get_torch_dtype(
'fp16'))
save_file(state_dict, self.slider_config.prompt_tensors)
prompt_pairs = []
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
for target in self.slider_config.targets:
if both or erase_negative:
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
if both or erase_negative:
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
both_targets=cache[f"{target.positive} {target.negative}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_pairs += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
)
]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get random multiplier between 1 and 3
rand_weight = 1
# rand_weight = torch.rand((1,)).item() * 2 + 1
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
# get a random resolution
height, width = self.slider_config.resolutions[
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
target_class = prompt_pair.target_class
neutral = prompt_pair.neutral
negative = prompt_pair.negative_target
positive = prompt_pair.positive_target
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(neg, pos, gs, cts, dn):
return self.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
neg, # negative prompt
pos, # positive prompt
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
# set network multiplier
self.network.multiplier = multiplier * rand_weight
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.get_latent_noise(
pixel_height=height,
pixel_width=width,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier * rand_weight
denoised_latents = self.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # unconditional
prompt_pair.target_class, # target
self.train_config.batch_size,
),
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
positive_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
prompt_pair.negative_target, # positive prompt
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
neutral_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
prompt_pair.empty_prompt, # positive prompt (normally neutral
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
unconditional_latents = get_noise_pred(
prompt_pair.positive_target, # negative prompt
prompt_pair.positive_target, # positive prompt
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
anchor_loss = None
if len(self.anchor_pairs) > 0:
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult * rand_weight
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
self.network.multiplier = prompt_pair.multiplier * rand_weight
with self.network:
self.network.multiplier = prompt_pair.multiplier * rand_weight
target_latents = get_noise_pred(
prompt_pair.positive_target,
prompt_pair.target_class,
1,
current_timestep,
denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_loss = loss_function(
anchor_target_noise,
anchor_pred_noise,
)
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
guidance_scale = 1.0
offset = guidance_scale * (positive_latents - unconditional_latents)
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
offset_neutral += offset
loss = loss_function(
target_latents,
offset_neutral,
) * weight
loss_slide = loss.item()
if anchor_loss is not None:
loss += anchor_loss
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
latents,
)
# move back to cpu
prompt_pair.to("cpu")
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
return loss_dict
# end hook_train_loop