Files
ai-toolkit/jobs/process/BaseSDTrainProcess.py
2023-08-27 17:48:02 -06:00

627 lines
24 KiB
Python

import glob
from collections import OrderedDict
import os
from typing import Union
from torch.utils.data import DataLoader
from toolkit.data_loader import get_dataloader_from_datasets
from toolkit.embedding import Embedding
from toolkit.lora_special import LoRASpecialNetwork
from toolkit.optimizer import get_optimizer
from toolkit.paths import CONFIG_ROOT
from toolkit.scheduler import get_lr_scheduler
from toolkit.stable_diffusion_model import StableDiffusion
from jobs.process import BaseTrainProcess
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_base_model_info_to_meta
from toolkit.train_tools import get_torch_dtype
import gc
import torch
from tqdm import tqdm
from toolkit.config_modules import SaveConfig, LogingConfig, SampleConfig, NetworkConfig, TrainConfig, ModelConfig, \
GenerateImageConfig, EmbeddingConfig, DatasetConfig
def flush():
torch.cuda.empty_cache()
gc.collect()
class BaseSDTrainProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict, custom_pipeline=None):
super().__init__(process_id, job, config)
self.sd: StableDiffusion
self.embedding: Union[Embedding, None] = None
self.custom_pipeline = custom_pipeline
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
network_config = self.get_conf('network', None)
if network_config is not None:
self.network_config = NetworkConfig(**network_config)
else:
self.network_config = None
self.train_config = TrainConfig(**self.get_conf('train', {}))
self.model_config = ModelConfig(**self.get_conf('model', {}))
self.save_config = SaveConfig(**self.get_conf('save', {}))
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
first_sample_config = self.get_conf('first_sample', None)
if first_sample_config is not None:
self.has_first_sample_requested = True
self.first_sample_config = SampleConfig(**first_sample_config)
else:
self.has_first_sample_requested = False
self.first_sample_config = self.sample_config
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
self.optimizer = None
self.lr_scheduler = None
self.data_loader: Union[DataLoader, None] = None
self.data_loader_reg: Union[DataLoader, None] = None
self.trigger_word = self.get_conf('trigger_word', None)
raw_datasets = self.get_conf('datasets', None)
self.datasets = None
self.datasets_reg = None
if raw_datasets is not None and len(raw_datasets) > 0:
for raw_dataset in raw_datasets:
dataset = DatasetConfig(**raw_dataset)
if dataset.is_reg:
if self.datasets_reg is None:
self.datasets_reg = []
self.datasets_reg.append(dataset)
else:
if self.datasets is None:
self.datasets = []
self.datasets.append(dataset)
self.embed_config = None
embedding_raw = self.get_conf('embedding', None)
if embedding_raw is not None:
self.embed_config = EmbeddingConfig(**embedding_raw)
self.sd = StableDiffusion(
device=self.device,
model_config=self.model_config,
dtype=self.train_config.dtype,
custom_pipeline=self.custom_pipeline,
)
# to hold network if there is one
self.network = None
self.embedding = None
def sample(self, step=None, is_first=False):
sample_folder = os.path.join(self.save_root, 'samples')
gen_img_config_list = []
sample_config = self.first_sample_config if is_first else self.sample_config
start_seed = sample_config.seed
current_seed = start_seed
for i in range(len(sample_config.prompts)):
if sample_config.walk_seed:
current_seed = start_seed + i
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
filename = f"[time]_{step_num}_[count].png"
output_path = os.path.join(sample_folder, filename)
prompt = sample_config.prompts[i]
# add embedding if there is one
# note: diffusers will automatically expand the trigger to the number of added tokens
# ie test123 will become test123 test123_1 test123_2 etc. Do not add this yourself here
if self.embedding is not None:
prompt = self.embedding.inject_embedding_to_prompt(
prompt,
)
if self.trigger_word is not None:
prompt = self.sd.inject_trigger_into_prompt(
prompt, self.trigger_word
)
gen_img_config_list.append(GenerateImageConfig(
prompt=prompt, # it will autoparse the prompt
width=sample_config.width,
height=sample_config.height,
negative_prompt=sample_config.neg,
seed=current_seed,
guidance_scale=sample_config.guidance_scale,
guidance_rescale=sample_config.guidance_rescale,
num_inference_steps=sample_config.sample_steps,
network_multiplier=sample_config.network_multiplier,
output_path=output_path,
))
# send to be generated
self.sd.generate_images(gen_img_config_list)
def update_training_metadata(self):
o_dict = OrderedDict({
"training_info": self.get_training_info()
})
if self.model_config.is_v2:
o_dict['ss_v2'] = True
o_dict['ss_base_model_version'] = 'sd_2.1'
elif self.model_config.is_xl:
o_dict['ss_base_model_version'] = 'sdxl_1.0'
else:
o_dict['ss_base_model_version'] = 'sd_1.5'
o_dict = add_base_model_info_to_meta(
o_dict,
is_v2=self.model_config.is_v2,
is_xl=self.model_config.is_xl,
)
o_dict['ss_output_name'] = self.job.name
self.add_meta(o_dict)
def get_training_info(self):
info = OrderedDict({
'step': self.step_num + 1
})
return info
def clean_up_saves(self):
# remove old saves
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors but NOT {job_name}.safetensors
pattern = f"{self.job.name}_*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > self.save_config.max_step_saves_to_keep:
# remove all but the latest max_step_saves_to_keep
files.sort(key=os.path.getctime)
for file in files[:-self.save_config.max_step_saves_to_keep]:
self.print(f"Removing old save: {file}")
os.remove(file)
return latest_file
else:
return None
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
filename = f'{self.job.name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
if self.network is not None:
prev_multiplier = self.network.multiplier
self.network.multiplier = 1.0
if self.network_config.normalize:
# apply the normalization
self.network.apply_stored_normalizer()
self.network.save_weights(
file_path,
dtype=get_torch_dtype(self.save_config.dtype),
metadata=save_meta
)
self.network.multiplier = prev_multiplier
elif self.embedding is not None:
# set current step
self.embedding.step = self.step_num
# change filename to pt if that is set
if self.embed_config.save_format == "pt":
# replace extension
file_path = os.path.splitext(file_path)[0] + ".pt"
self.embedding.save(file_path)
else:
self.sd.save(
file_path,
save_meta,
get_torch_dtype(self.save_config.dtype)
)
self.print(f"Saved to {file_path}")
self.clean_up_saves()
# Called before the model is loaded
def hook_before_model_load(self):
# override in subclass
pass
def hook_add_extra_train_params(self, params):
# override in subclass
return params
def hook_before_train_loop(self):
pass
def before_dataset_load(self):
pass
def hook_train_loop(self, batch):
# return loss
return 0.0
def get_latest_save_path(self):
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors or {job_name}.safetensors
pattern = f"{self.job.name}*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > 0:
latest_file = max(files, key=os.path.getctime)
# try pt
pattern = f"{self.job.name}*.pt"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > 0:
latest_file = max(files, key=os.path.getctime)
return latest_file
else:
return None
def load_weights(self, path):
if self.network is not None:
self.network.load_weights(path)
meta = load_metadata_from_safetensors(path)
# if 'training_info' in Orderdict keys
if 'training_info' in meta and 'step' in meta['training_info']:
self.step_num = meta['training_info']['step']
self.start_step = self.step_num
print(f"Found step {self.step_num} in metadata, starting from there")
else:
print("load_weights not implemented for non-network models")
def process_general_training_batch(self, batch):
with torch.no_grad():
imgs, prompts, dataset_config = batch
# convert the 0 or 1 for is reg to a bool list
if isinstance(dataset_config, list):
is_reg_list = [x.get('is_reg', 0) for x in dataset_config]
else:
is_reg_list = dataset_config.get('is_reg', [0 for _ in range(imgs.shape[0])])
if isinstance(is_reg_list, torch.Tensor):
is_reg_list = is_reg_list.numpy().tolist()
is_reg_list = [bool(x) for x in is_reg_list]
conditioned_prompts = []
for prompt, is_reg in zip(prompts, is_reg_list):
# make sure the embedding is in the prompts
if self.embedding is not None:
prompt = self.embedding.inject_embedding_to_prompt(
prompt,
expand_token=True,
add_if_not_present=True,
)
# make sure trigger is in the prompts if not a regularization run
if self.trigger_word is not None and not is_reg:
prompt = self.sd.inject_trigger_into_prompt(
prompt,
trigger=self.trigger_word,
add_if_not_present=True,
)
conditioned_prompts.append(prompt)
batch_size = imgs.shape[0]
dtype = get_torch_dtype(self.train_config.dtype)
imgs = imgs.to(self.device_torch, dtype=dtype)
latents = self.sd.encode_images(imgs)
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (batch_size,), device=self.device_torch)
timesteps = timesteps.long()
# get noise
noise = self.sd.get_latent_noise(
pixel_height=imgs.shape[2],
pixel_width=imgs.shape[3],
batch_size=batch_size,
noise_offset=self.train_config.noise_offset
).to(self.device_torch, dtype=dtype)
noisy_latents = self.sd.noise_scheduler.add_noise(latents, noise, timesteps)
# remove grads for these
noisy_latents.requires_grad = False
noisy_latents = noisy_latents.detach()
noise.requires_grad = False
noise = noise.detach()
return noisy_latents, noise, timesteps, conditioned_prompts, imgs
def run(self):
# run base process run
BaseTrainProcess.run(self)
### HOOk ###
self.before_dataset_load()
# load datasets if passed in the root process
if self.datasets is not None:
self.data_loader = get_dataloader_from_datasets(self.datasets, self.train_config.batch_size)
if self.datasets_reg is not None:
self.data_loader_reg = get_dataloader_from_datasets(self.datasets_reg, self.train_config.batch_size)
### HOOK ###
self.hook_before_model_load()
# run base sd process run
self.sd.load_model()
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
dtype = get_torch_dtype(self.train_config.dtype)
# model is loaded from BaseSDProcess
unet = self.sd.unet
vae = self.sd.vae
tokenizer = self.sd.tokenizer
text_encoder = self.sd.text_encoder
noise_scheduler = self.sd.noise_scheduler
if self.train_config.xformers:
vae.set_use_memory_efficient_attention_xformers(True)
unet.enable_xformers_memory_efficient_attention()
if self.train_config.gradient_checkpointing:
unet.enable_gradient_checkpointing()
# if isinstance(text_encoder, list):
# for te in text_encoder:
# te.enable_gradient_checkpointing()
# else:
# text_encoder.enable_gradient_checkpointing()
unet.to(self.device_torch, dtype=dtype)
unet.requires_grad_(False)
unet.eval()
vae = vae.to(torch.device('cpu'), dtype=dtype)
vae.requires_grad_(False)
vae.eval()
if self.network_config is not None:
self.network = LoRASpecialNetwork(
text_encoder=text_encoder,
unet=unet,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.linear_alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=self.network_config.conv,
conv_alpha=self.network_config.conv_alpha,
)
self.network.force_to(self.device_torch, dtype=dtype)
# give network to sd so it can use it
self.sd.network = self.network
self.network.apply_to(
text_encoder,
unet,
self.train_config.train_text_encoder,
self.train_config.train_unet
)
self.network.prepare_grad_etc(text_encoder, unet)
params = self.network.prepare_optimizer_params(
text_encoder_lr=self.train_config.lr,
unet_lr=self.train_config.lr,
default_lr=self.train_config.lr
)
if self.train_config.gradient_checkpointing:
self.network.enable_gradient_checkpointing()
# set the network to normalize if we are
self.network.is_normalizing = self.network_config.normalize
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
self.print(f"Loading from {latest_save_path}")
self.load_weights(latest_save_path)
self.network.multiplier = 1.0
elif self.embed_config is not None:
self.embedding = Embedding(
sd=self.sd,
embed_config=self.embed_config
)
latest_save_path = self.get_latest_save_path()
# load last saved weights
if latest_save_path is not None:
self.embedding.load_embedding_from_file(latest_save_path, self.device_torch)
# resume state from embedding
self.step_num = self.embedding.step
# set trainable params
params = self.embedding.get_trainable_params()
else:
params = []
# assume dreambooth/finetune
if self.train_config.train_text_encoder:
if self.sd.is_xl:
for te in text_encoder:
te.requires_grad_(True)
te.train()
params += te.parameters()
else:
text_encoder.requires_grad_(True)
text_encoder.train()
params += text_encoder.parameters()
if self.train_config.train_unet:
unet.requires_grad_(True)
unet.train()
params += unet.parameters()
### HOOK ###
params = self.hook_add_extra_train_params(params)
optimizer_type = self.train_config.optimizer.lower()
optimizer = get_optimizer(params, optimizer_type, learning_rate=self.train_config.lr,
optimizer_params=self.train_config.optimizer_params)
self.optimizer = optimizer
lr_scheduler = get_lr_scheduler(
self.train_config.lr_scheduler,
optimizer,
max_iterations=self.train_config.steps,
lr_min=self.train_config.lr / 100,
)
self.lr_scheduler = lr_scheduler
### HOOK ###
self.hook_before_train_loop()
if self.has_first_sample_requested:
self.print("Generating first sample from first sample config")
self.sample(0, is_first=True)
# sample first
if self.train_config.skip_first_sample:
self.print("Skipping first sample due to config setting")
else:
self.print("Generating baseline samples before training")
self.sample(0)
self.progress_bar = tqdm(
total=self.train_config.steps,
desc=self.job.name,
leave=True,
initial=self.step_num,
iterable=range(0, self.train_config.steps),
)
if self.data_loader is not None:
dataloader = self.data_loader
dataloader_iterator = iter(dataloader)
else:
dataloader = None
dataloader_iterator = None
if self.data_loader_reg is not None:
dataloader_reg = self.data_loader_reg
dataloader_iterator_reg = iter(dataloader_reg)
else:
dataloader_reg = None
dataloader_iterator_reg = None
# zero any gradients
optimizer.zero_grad()
# self.step_num = 0
for step in range(self.step_num, self.train_config.steps):
with torch.no_grad():
# if is even step and we have a reg dataset, use that
# todo improve this logic to send one of each through if we can buckets and batch size might be an issue
if step % 2 == 0 and dataloader_reg is not None:
try:
batch = next(dataloader_iterator_reg)
except StopIteration:
# hit the end of an epoch, reset
dataloader_iterator_reg = iter(dataloader_reg)
batch = next(dataloader_iterator_reg)
elif dataloader is not None:
try:
batch = next(dataloader_iterator)
except StopIteration:
# hit the end of an epoch, reset
dataloader_iterator = iter(dataloader)
batch = next(dataloader_iterator)
else:
batch = None
# turn on normalization if we are using it and it is not on
if self.network is not None and self.network_config.normalize and not self.network.is_normalizing:
self.network.is_normalizing = True
### HOOK ###
loss_dict = self.hook_train_loop(batch)
flush()
with torch.no_grad():
if self.train_config.optimizer.lower().startswith('dadaptation') or \
self.train_config.optimizer.lower().startswith('prodigy'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
prog_bar_string = f"lr: {learning_rate:.1e}"
for key, value in loss_dict.items():
prog_bar_string += f" {key}: {value:.3e}"
self.progress_bar.set_postfix_str(prog_bar_string)
# don't do on first step
if self.step_num != self.start_step:
# pause progress bar
self.progress_bar.unpause() # makes it so doesn't track time
if self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0:
# print above the progress bar
self.sample(self.step_num)
if self.save_config.save_every and self.step_num % self.save_config.save_every == 0:
# print above the progress bar
self.print(f"Saving at step {self.step_num}")
self.save(self.step_num)
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
# log to tensorboard
if self.writer is not None:
for key, value in loss_dict.items():
self.writer.add_scalar(f"{key}", value, self.step_num)
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
self.progress_bar.refresh()
# sets progress bar to match out step
self.progress_bar.update(step - self.progress_bar.n)
# end of step
self.step_num = step
# apply network normalizer if we are using it
if self.network is not None and self.network.is_normalizing:
self.network.apply_stored_normalizer()
self.sample(self.step_num + 1)
print("")
self.save()
del (
self.sd,
unet,
noise_scheduler,
optimizer,
self.network,
tokenizer,
text_encoder,
)
flush()