Files
ai-toolkit/toolkit/dataloader_mixins.py
2023-09-08 06:10:59 -06:00

267 lines
11 KiB
Python

import math
import os
import random
from typing import TYPE_CHECKING, List, Dict, Union
from toolkit.buckets import get_bucket_for_image_size
from toolkit.prompt_utils import inject_trigger_into_prompt
from torchvision import transforms
from PIL import Image
from PIL.ImageOps import exif_transpose
if TYPE_CHECKING:
from toolkit.data_loader import AiToolkitDataset
from toolkit.data_transfer_object.data_loader import FileItemDTO
# def get_associated_caption_from_img_path(img_path):
class CaptionMixin:
def get_caption_item(self: 'AiToolkitDataset', index):
if not hasattr(self, 'caption_type'):
raise Exception('caption_type not found on class instance')
if not hasattr(self, 'file_list'):
raise Exception('file_list not found on class instance')
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
img_path = img_path_or_tuple[0] if isinstance(img_path_or_tuple[0], str) else img_path_or_tuple[0].path
# check if either has a prompt file
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
if not os.path.exists(prompt_path):
img_path = img_path_or_tuple[1] if isinstance(img_path_or_tuple[1], str) else img_path_or_tuple[1].path
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
else:
img_path = img_path_or_tuple if isinstance(img_path_or_tuple, str) else img_path_or_tuple.path
# see if prompt file exists
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# remove any newlines
prompt = prompt.replace('\n', ', ')
# remove new lines for all operating systems
prompt = prompt.replace('\r', ', ')
prompt_split = prompt.split(',')
# remove empty strings
prompt_split = [p.strip() for p in prompt_split if p.strip()]
# join back together
prompt = ', '.join(prompt_split)
else:
prompt = ''
# get default_prompt if it exists on the class instance
if hasattr(self, 'default_prompt'):
prompt = self.default_prompt
if hasattr(self, 'default_caption'):
prompt = self.default_caption
return prompt
if TYPE_CHECKING:
from toolkit.config_modules import DatasetConfig
from toolkit.data_transfer_object.data_loader import FileItemDTO
class Bucket:
def __init__(self, width: int, height: int):
self.width = width
self.height = height
self.file_list_idx: List[int] = []
class BucketsMixin:
def __init__(self):
self.buckets: Dict[str, Bucket] = {}
self.batch_indices: List[List[int]] = []
def build_batch_indices(self: 'AiToolkitDataset'):
for key, bucket in self.buckets.items():
for start_idx in range(0, len(bucket.file_list_idx), self.batch_size):
end_idx = min(start_idx + self.batch_size, len(bucket.file_list_idx))
batch = bucket.file_list_idx[start_idx:end_idx]
self.batch_indices.append(batch)
def setup_buckets(self: 'AiToolkitDataset'):
if not hasattr(self, 'file_list'):
raise Exception(f'file_list not found on class instance {self.__class__.__name__}')
if not hasattr(self, 'dataset_config'):
raise Exception(f'dataset_config not found on class instance {self.__class__.__name__}')
config: 'DatasetConfig' = self.dataset_config
resolution = config.resolution
bucket_tolerance = config.bucket_tolerance
file_list: List['FileItemDTO'] = self.file_list
total_pixels = resolution * resolution
# for file_item in enumerate(file_list):
for idx, file_item in enumerate(file_list):
width = file_item.crop_width
height = file_item.crop_height
bucket_resolution = get_bucket_for_image_size(width, height, resolution=resolution)
# set the scaling height and with to match smallest size, and keep aspect ratio
if width > height:
file_item.scale_height = bucket_resolution["height"]
file_item.scale_width = int(width * (bucket_resolution["height"] / height))
else:
file_item.scale_width = bucket_resolution["width"]
file_item.scale_height = int(height * (bucket_resolution["width"] / width))
file_item.crop_height = bucket_resolution["height"]
file_item.crop_width = bucket_resolution["width"]
new_width = bucket_resolution["width"]
new_height = bucket_resolution["height"]
# check if bucket exists, if not, create it
bucket_key = f'{new_width}x{new_height}'
if bucket_key not in self.buckets:
self.buckets[bucket_key] = Bucket(new_width, new_height)
self.buckets[bucket_key].file_list_idx.append(idx)
# print the buckets
self.build_batch_indices()
name = f"{os.path.basename(self.dataset_path)} ({self.resolution})"
print(f'Bucket sizes for {self.dataset_path}:')
for key, bucket in self.buckets.items():
print(f'{key}: {len(bucket.file_list_idx)} files')
print(f'{len(self.buckets)} buckets made')
# file buckets made
class CaptionProcessingDTOMixin:
# todo allow for loading from sd-scripts style dict
def load_caption(self: 'FileItemDTO', caption_dict: Union[dict, None]):
if self.raw_caption is not None:
# we already loaded it
pass
elif caption_dict is not None and self.path in caption_dict and "caption" in caption_dict[self.path]:
self.raw_caption = caption_dict[self.path]["caption"]
else:
# see if prompt file exists
path_no_ext = os.path.splitext(self.path)[0]
prompt_ext = self.dataset_config.caption_ext
prompt_path = f"{path_no_ext}.{prompt_ext}"
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# remove any newlines
prompt = prompt.replace('\n', ', ')
# remove new lines for all operating systems
prompt = prompt.replace('\r', ', ')
prompt_split = prompt.split(',')
# remove empty strings
prompt_split = [p.strip() for p in prompt_split if p.strip()]
# join back together
prompt = ', '.join(prompt_split)
else:
prompt = ''
if self.dataset_config.default_caption is not None:
prompt = self.dataset_config.default_caption
self.raw_caption = prompt
def get_caption(
self: 'FileItemDTO',
trigger=None,
to_replace_list=None,
add_if_not_present=False
):
raw_caption = self.raw_caption
if raw_caption is None:
raw_caption = ''
# handle dropout
if self.dataset_config.caption_dropout_rate > 0:
# get a random float form 0 to 1
rand = random.random()
if rand < self.dataset_config.caption_dropout_rate:
# drop the caption
return ''
# get tokens
token_list = raw_caption.split(',')
# trim whitespace
token_list = [x.strip() for x in token_list]
# remove empty strings
token_list = [x for x in token_list if x]
if self.dataset_config.shuffle_tokens:
random.shuffle(token_list)
# handle token dropout
if self.dataset_config.token_dropout_rate > 0:
new_token_list = []
for token in token_list:
# get a random float form 0 to 1
rand = random.random()
if rand > self.dataset_config.token_dropout_rate:
# keep the token
new_token_list.append(token)
token_list = new_token_list
# join back together
caption = ', '.join(token_list)
caption = inject_trigger_into_prompt(caption, trigger, to_replace_list, add_if_not_present)
return caption
class ImageProcessingDTOMixin:
def load_and_process_image(
self: 'FileItemDTO',
transform: Union[None, transforms.Compose]
):
# todo make sure this matches
try:
img = Image.open(self.path).convert('RGB')
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.path}")
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.dataset_config.buckets:
# todo allow scaling and cropping, will be hard to add
# scale and crop based on file item
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC)
img = transforms.CenterCrop((self.crop_height, self.crop_width))(img)
else:
# Downscale the source image first
img = img.resize(
(int(img.size[0] * self.dataset_config.scale), int(img.size[1] * self.dataset_config.scale)),
Image.BICUBIC)
min_img_size = min(img.size)
if self.dataset_config.random_crop:
if self.dataset_config.random_scale and min_img_size > self.dataset_config.resolution:
if min_img_size < self.dataset_config.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.dataset_config.resolution}, image file={self.path}")
scale_size = self.dataset_config.resolution
else:
scale_size = random.randint(self.dataset_config.resolution, int(min_img_size))
img = img.resize((scale_size, scale_size), Image.BICUBIC)
img = transforms.RandomCrop(self.dataset_config.resolution)(img)
else:
img = transforms.CenterCrop(min_img_size)(img)
img = img.resize((self.dataset_config.resolution, self.dataset_config.resolution), Image.BICUBIC)
if transform:
img = transform(img)
self.tensor = img