mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
527 lines
22 KiB
Python
527 lines
22 KiB
Python
import os
|
|
from typing import TYPE_CHECKING, List
|
|
|
|
import torch
|
|
import torchvision
|
|
import yaml
|
|
from toolkit import train_tools
|
|
from toolkit.config_modules import GenerateImageConfig, ModelConfig
|
|
from PIL import Image
|
|
from toolkit.models.base_model import BaseModel
|
|
from diffusers import FluxTransformer2DModel, AutoencoderKL
|
|
from toolkit.basic import flush
|
|
from toolkit.prompt_utils import PromptEmbeds
|
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
|
|
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
|
|
from toolkit.dequantize import patch_dequantization_on_save
|
|
from toolkit.accelerator import get_accelerator, unwrap_model
|
|
from optimum.quanto import freeze, QTensor
|
|
from toolkit.util.mask import generate_random_mask, random_dialate_mask
|
|
from toolkit.util.quantize import quantize, get_qtype
|
|
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
|
|
from .pipeline import Flex2Pipeline
|
|
from einops import rearrange, repeat
|
|
import random
|
|
import torch.nn.functional as F
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
|
|
|
scheduler_config = {
|
|
"base_image_seq_len": 256,
|
|
"base_shift": 0.5,
|
|
"max_image_seq_len": 4096,
|
|
"max_shift": 1.15,
|
|
"num_train_timesteps": 1000,
|
|
"shift": 3.0,
|
|
"use_dynamic_shifting": True
|
|
}
|
|
|
|
|
|
def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5):
|
|
if random.random() < p:
|
|
kernel_size = random.randint(min_kernel_size, max_kernel_size)
|
|
# make sure it is odd
|
|
if kernel_size % 2 == 0:
|
|
kernel_size += 1
|
|
img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size)
|
|
return img
|
|
|
|
class Flex2(BaseModel):
|
|
arch = "flex2"
|
|
|
|
def __init__(
|
|
self,
|
|
device,
|
|
model_config: ModelConfig,
|
|
dtype='bf16',
|
|
custom_pipeline=None,
|
|
noise_scheduler=None,
|
|
**kwargs
|
|
):
|
|
super().__init__(
|
|
device,
|
|
model_config,
|
|
dtype,
|
|
custom_pipeline,
|
|
noise_scheduler,
|
|
**kwargs
|
|
)
|
|
self.is_flow_matching = True
|
|
self.is_transformer = True
|
|
self.target_lora_modules = ['FluxTransformer2DModel']
|
|
|
|
# for training, pass these as kwargs
|
|
self.invert_inpaint_mask_chance = model_config.model_kwargs.get('invert_inpaint_mask_chance', 0.0)
|
|
self.inpaint_dropout = model_config.model_kwargs.get('inpaint_dropout', 0.0)
|
|
self.control_dropout = model_config.model_kwargs.get('control_dropout', 0.0)
|
|
self.inpaint_random_chance = model_config.model_kwargs.get('inpaint_random_chance', 0.0)
|
|
self.random_blur_mask = model_config.model_kwargs.get('random_blur_mask', False)
|
|
self.random_dialate_mask = model_config.model_kwargs.get('random_dialate_mask', False)
|
|
self.do_random_inpainting = model_config.model_kwargs.get('do_random_inpainting', False)
|
|
|
|
# static method to get the noise scheduler
|
|
@staticmethod
|
|
def get_train_scheduler():
|
|
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
|
|
|
|
def get_bucket_divisibility(self):
|
|
return 16
|
|
|
|
def load_model(self):
|
|
dtype = self.torch_dtype
|
|
self.print_and_status_update("Loading Flux2 model")
|
|
# will be updated if we detect a existing checkpoint in training folder
|
|
model_path = self.model_config.name_or_path
|
|
# this is the original path put in the model directory
|
|
# it is here because for finetuning we only save the transformer usually
|
|
# so we need this for the VAE, te, etc
|
|
base_model_path = self.model_config.name_or_path_original
|
|
|
|
transformer_path = model_path
|
|
transformer_subfolder = 'transformer'
|
|
if os.path.exists(transformer_path):
|
|
transformer_subfolder = None
|
|
transformer_path = os.path.join(transformer_path, 'transformer')
|
|
# check if the path is a full checkpoint.
|
|
te_folder_path = os.path.join(model_path, 'text_encoder')
|
|
# if we have the te, this folder is a full checkpoint, use it as the base
|
|
if os.path.exists(te_folder_path):
|
|
base_model_path = model_path
|
|
|
|
self.print_and_status_update("Loading transformer")
|
|
transformer = FluxTransformer2DModel.from_pretrained(
|
|
transformer_path,
|
|
subfolder=transformer_subfolder,
|
|
torch_dtype=dtype,
|
|
)
|
|
transformer.to(self.quantize_device, dtype=dtype)
|
|
|
|
if self.model_config.quantize:
|
|
# patch the state dict method
|
|
patch_dequantization_on_save(transformer)
|
|
quantization_type = get_qtype(self.model_config.qtype)
|
|
self.print_and_status_update("Quantizing transformer")
|
|
quantize(transformer, weights=quantization_type,
|
|
**self.model_config.quantize_kwargs)
|
|
freeze(transformer)
|
|
transformer.to(self.device_torch)
|
|
else:
|
|
transformer.to(self.device_torch, dtype=dtype)
|
|
|
|
flush()
|
|
|
|
self.print_and_status_update("Loading T5")
|
|
tokenizer_2 = T5TokenizerFast.from_pretrained(
|
|
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype
|
|
)
|
|
text_encoder_2 = T5EncoderModel.from_pretrained(
|
|
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype
|
|
)
|
|
text_encoder_2.to(self.device_torch, dtype=dtype)
|
|
flush()
|
|
|
|
if self.model_config.quantize_te:
|
|
self.print_and_status_update("Quantizing T5")
|
|
quantize(text_encoder_2, weights=get_qtype(
|
|
self.model_config.qtype))
|
|
freeze(text_encoder_2)
|
|
flush()
|
|
|
|
self.print_and_status_update("Loading CLIP")
|
|
text_encoder = CLIPTextModel.from_pretrained(
|
|
base_model_path, subfolder="text_encoder", torch_dtype=dtype)
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
base_model_path, subfolder="tokenizer", torch_dtype=dtype)
|
|
text_encoder.to(self.device_torch, dtype=dtype)
|
|
|
|
self.print_and_status_update("Loading VAE")
|
|
vae = AutoencoderKL.from_pretrained(
|
|
base_model_path, subfolder="vae", torch_dtype=dtype)
|
|
|
|
self.noise_scheduler = Flex2.get_train_scheduler()
|
|
|
|
self.print_and_status_update("Making pipe")
|
|
|
|
pipe: Flex2Pipeline = Flex2Pipeline(
|
|
scheduler=self.noise_scheduler,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
text_encoder_2=None,
|
|
tokenizer_2=tokenizer_2,
|
|
vae=vae,
|
|
transformer=None,
|
|
)
|
|
# for quantization, it works best to do these after making the pipe
|
|
pipe.text_encoder_2 = text_encoder_2
|
|
pipe.transformer = transformer
|
|
|
|
self.print_and_status_update("Preparing Model")
|
|
|
|
text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
|
|
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
|
|
|
|
pipe.transformer = pipe.transformer.to(self.device_torch)
|
|
|
|
flush()
|
|
# just to make sure everything is on the right device and dtype
|
|
text_encoder[0].to(self.device_torch)
|
|
text_encoder[0].requires_grad_(False)
|
|
text_encoder[0].eval()
|
|
text_encoder[1].to(self.device_torch)
|
|
text_encoder[1].requires_grad_(False)
|
|
text_encoder[1].eval()
|
|
pipe.transformer = pipe.transformer.to(self.device_torch)
|
|
flush()
|
|
|
|
# save it to the model class
|
|
self.vae = vae
|
|
self.text_encoder = text_encoder # list of text encoders
|
|
self.tokenizer = tokenizer # list of tokenizers
|
|
self.model = pipe.transformer
|
|
self.pipeline = pipe
|
|
self.print_and_status_update("Model Loaded")
|
|
|
|
def get_generation_pipeline(self):
|
|
scheduler = Flex2.get_train_scheduler()
|
|
|
|
pipeline: Flex2Pipeline = Flex2Pipeline(
|
|
scheduler=scheduler,
|
|
text_encoder=unwrap_model(self.text_encoder[0]),
|
|
tokenizer=self.tokenizer[0],
|
|
text_encoder_2=unwrap_model(self.text_encoder[1]),
|
|
tokenizer_2=self.tokenizer[1],
|
|
vae=unwrap_model(self.vae),
|
|
transformer=unwrap_model(self.transformer)
|
|
)
|
|
|
|
pipeline = pipeline.to(self.device_torch)
|
|
|
|
return pipeline
|
|
|
|
def generate_single_image(
|
|
self,
|
|
pipeline: Flex2Pipeline,
|
|
gen_config: GenerateImageConfig,
|
|
conditional_embeds: PromptEmbeds,
|
|
unconditional_embeds: PromptEmbeds,
|
|
generator: torch.Generator,
|
|
extra: dict,
|
|
):
|
|
if gen_config.ctrl_img is None:
|
|
control_img = None
|
|
else:
|
|
control_img = Image.open(gen_config.ctrl_img)
|
|
if ".inpaint." not in gen_config.ctrl_img:
|
|
control_img = control_img.convert("RGB")
|
|
else:
|
|
# make sure it has an alpha
|
|
if control_img.mode != "RGBA":
|
|
raise ValueError("Inpainting images must have an alpha channel")
|
|
img = pipeline(
|
|
prompt_embeds=conditional_embeds.text_embeds,
|
|
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
|
|
height=gen_config.height,
|
|
width=gen_config.width,
|
|
num_inference_steps=gen_config.num_inference_steps,
|
|
guidance_scale=gen_config.guidance_scale,
|
|
latents=gen_config.latents,
|
|
generator=generator,
|
|
control_image=control_img,
|
|
control_image_idx=gen_config.ctrl_idx,
|
|
**extra
|
|
).images[0]
|
|
return img
|
|
|
|
def get_noise_prediction(
|
|
self,
|
|
latent_model_input: torch.Tensor,
|
|
timestep: torch.Tensor, # 0 to 1000 scale
|
|
text_embeddings: PromptEmbeds,
|
|
guidance_embedding_scale: float,
|
|
bypass_guidance_embedding: bool,
|
|
**kwargs
|
|
):
|
|
with torch.no_grad():
|
|
bs, c, h, w = latent_model_input.shape
|
|
latent_model_input_packed = rearrange(
|
|
latent_model_input,
|
|
"b c (h ph) (w pw) -> b (h w) (c ph pw)",
|
|
ph=2,
|
|
pw=2
|
|
)
|
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3)
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c",
|
|
b=bs).to(self.device_torch)
|
|
|
|
txt_ids = torch.zeros(
|
|
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)
|
|
|
|
# # handle guidance
|
|
if self.unet_unwrapped.config.guidance_embeds:
|
|
if isinstance(guidance_embedding_scale, list):
|
|
guidance = torch.tensor(
|
|
guidance_embedding_scale, device=self.device_torch)
|
|
else:
|
|
guidance = torch.tensor(
|
|
[guidance_embedding_scale], device=self.device_torch)
|
|
guidance = guidance.expand(latent_model_input.shape[0])
|
|
else:
|
|
guidance = None
|
|
|
|
if bypass_guidance_embedding:
|
|
bypass_flux_guidance(self.unet)
|
|
|
|
cast_dtype = self.unet.dtype
|
|
# changes from orig implementation
|
|
if txt_ids.ndim == 3:
|
|
txt_ids = txt_ids[0]
|
|
if img_ids.ndim == 3:
|
|
img_ids = img_ids[0]
|
|
|
|
noise_pred = self.unet(
|
|
hidden_states=latent_model_input_packed.to(
|
|
self.device_torch, cast_dtype),
|
|
timestep=timestep / 1000,
|
|
encoder_hidden_states=text_embeddings.text_embeds.to(
|
|
self.device_torch, cast_dtype),
|
|
pooled_projections=text_embeddings.pooled_embeds.to(
|
|
self.device_torch, cast_dtype),
|
|
txt_ids=txt_ids,
|
|
img_ids=img_ids,
|
|
guidance=guidance,
|
|
return_dict=False,
|
|
**kwargs,
|
|
)[0]
|
|
|
|
if isinstance(noise_pred, QTensor):
|
|
noise_pred = noise_pred.dequantize()
|
|
|
|
noise_pred = rearrange(
|
|
noise_pred,
|
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
|
h=latent_model_input.shape[2] // 2,
|
|
w=latent_model_input.shape[3] // 2,
|
|
ph=2,
|
|
pw=2,
|
|
c=self.vae.config.latent_channels
|
|
)
|
|
|
|
if bypass_guidance_embedding:
|
|
restore_flux_guidance(self.unet)
|
|
|
|
return noise_pred
|
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
|
if self.pipeline.text_encoder.device != self.device_torch:
|
|
self.pipeline.text_encoder.to(self.device_torch)
|
|
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
|
|
self.tokenizer,
|
|
self.text_encoder,
|
|
prompt,
|
|
max_length=512,
|
|
)
|
|
pe = PromptEmbeds(
|
|
prompt_embeds
|
|
)
|
|
pe.pooled_embeds = pooled_prompt_embeds
|
|
return pe
|
|
|
|
def get_model_has_grad(self):
|
|
# return from a weight if it has grad
|
|
return self.model.proj_out.weight.requires_grad
|
|
|
|
def get_te_has_grad(self):
|
|
# return from a weight if it has grad
|
|
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
|
|
|
|
def save_model(self, output_path, meta, save_dtype):
|
|
# only save the unet
|
|
transformer: FluxTransformer2DModel = unwrap_model(self.model)
|
|
transformer.save_pretrained(
|
|
save_directory=os.path.join(output_path, 'transformer'),
|
|
safe_serialization=True,
|
|
)
|
|
|
|
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
|
|
with open(meta_path, 'w') as f:
|
|
yaml.dump(meta, f)
|
|
|
|
def get_loss_target(self, *args, **kwargs):
|
|
noise = kwargs.get('noise')
|
|
batch = kwargs.get('batch')
|
|
return (noise - batch.latents).detach()
|
|
|
|
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
|
|
with torch.no_grad():
|
|
# inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor
|
|
# 4th channel is the mask with 1 being keep area and 0 being area to inpaint.
|
|
# todo handle dropout on a batch item level, this frops out the entire batch
|
|
do_dropout = random.random() < self.inpaint_dropout if self.inpaint_dropout > 0.0 else False
|
|
# do random mask if we dont have one
|
|
inpaint_tensor = batch.inpaint_tensor
|
|
if inpaint_tensor is None and batch.mask_tensor is not None:
|
|
# we have a mask tensor, use it
|
|
inpaint_tensor = batch.mask_tensor
|
|
|
|
if self.inpaint_random_chance > 0.0:
|
|
do_random = random.random() < self.inpaint_random_chance
|
|
if do_random:
|
|
# force a random tensor
|
|
inpaint_tensor = None
|
|
|
|
if inpaint_tensor is None and not do_dropout and self.do_random_inpainting:
|
|
# generate a random one since we dont have one
|
|
# this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha
|
|
inpaint_tensor = 1 - generate_random_mask(
|
|
batch_size=latents.shape[0],
|
|
height=latents.shape[2],
|
|
width=latents.shape[3],
|
|
device=latents.device,
|
|
).to(latents.device, latents.dtype)
|
|
if inpaint_tensor is not None and not do_dropout:
|
|
|
|
if inpaint_tensor.shape[1] == 4:
|
|
# get just the mask
|
|
inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype)
|
|
elif inpaint_tensor.shape[1] == 3:
|
|
# rgb mask. Just get one channel
|
|
inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype)
|
|
# mask is 0-1 with 1 being inpaint area, we need to invert it for now, it is re inverted later
|
|
inpaint_tensor = 1 - inpaint_tensor
|
|
else:
|
|
inpainting_tensor_mask = inpaint_tensor
|
|
|
|
# # use our batch latents so we cna avoid encoding again
|
|
inpainting_latent = batch.latents
|
|
|
|
# resize the mask to match the new encoded size
|
|
inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear')
|
|
inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype)
|
|
|
|
if self.random_blur_mask:
|
|
# blur the mask
|
|
# Give it a channel dim of 1
|
|
if len(inpainting_tensor_mask.shape) == 3:
|
|
# if it is 3d, add a channel dim
|
|
inpainting_tensor_mask = inpainting_tensor_mask.unsqueeze(1)
|
|
# we are at latent size, so keep kernel smaller
|
|
inpainting_tensor_mask = random_blur(
|
|
inpainting_tensor_mask,
|
|
min_kernel_size=3,
|
|
max_kernel_size=8,
|
|
p=0.5
|
|
)
|
|
|
|
do_mask_invert = False
|
|
if self.invert_inpaint_mask_chance > 0.0:
|
|
do_mask_invert = random.random() < self.invert_inpaint_mask_chance
|
|
if do_mask_invert:
|
|
# invert the mask
|
|
inpainting_tensor_mask = 1 - inpainting_tensor_mask
|
|
|
|
# mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area
|
|
# we are zeroing our the latents in the inpaint area not on the pixel space.
|
|
inpainting_latent = inpainting_latent * inpainting_tensor_mask
|
|
|
|
# do the random dialation after the mask is applied so it does not match perfectly.
|
|
# this will make the model learn to prevent weird edges
|
|
if self.random_dialate_mask:
|
|
inpainting_tensor_mask = random_dialate_mask(
|
|
inpainting_tensor_mask,
|
|
max_percent=0.05
|
|
)
|
|
|
|
# mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it.
|
|
inpainting_tensor_mask = 1 - inpainting_tensor_mask
|
|
# leave the mask as 0-1 and concat on channel of latents
|
|
inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1)
|
|
else:
|
|
# we have iinpainting but didnt get a control. or we are doing a dropout
|
|
# the input needs to be all zeros for the latents and all 1s for the mask
|
|
inpainting_latent = torch.zeros_like(latents)
|
|
# add ones for the mask since we are technically inpainting everything
|
|
inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1)
|
|
|
|
control_tensor = batch.control_tensor
|
|
if control_tensor is None:
|
|
# concat random normal noise onto the latents
|
|
# check dimension, this is before they are rearranged
|
|
# it is latent_model_input = torch.cat([latents, control_image], dim=2) after rearranging
|
|
ctrl = torch.zeros(
|
|
latents.shape[0], # bs
|
|
latents.shape[1],
|
|
latents.shape[2],
|
|
latents.shape[3],
|
|
device=latents.device,
|
|
dtype=latents.dtype
|
|
)
|
|
# inpainting always comes first
|
|
ctrl = torch.cat((inpainting_latent, ctrl), dim=1)
|
|
latents = torch.cat((latents, ctrl), dim=1)
|
|
return latents.detach()
|
|
# if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w]
|
|
# if we have 1, it comes in like [bs, ch, h, w]
|
|
# stack out control tensors to be [bs, ch * num_control_images, h, w]
|
|
|
|
control_tensor_list = []
|
|
if len(control_tensor.shape) == 4:
|
|
control_tensor_list.append(control_tensor)
|
|
else:
|
|
num_control_images = control_tensor.shape[1]
|
|
# reshape
|
|
control_tensor = control_tensor.view(
|
|
control_tensor.shape[0],
|
|
control_tensor.shape[1] * control_tensor.shape[2],
|
|
control_tensor.shape[3],
|
|
control_tensor.shape[4]
|
|
)
|
|
control_tensor_list = control_tensor.chunk(num_control_images, dim=1)
|
|
|
|
do_dropout = random.random() < self.control_dropout if self.control_dropout > 0.0 else False
|
|
if do_dropout:
|
|
# dropout with zeros
|
|
control_latent = torch.zeros_like(batch.latents)
|
|
else:
|
|
# we only have one control so we randomly pick from this list
|
|
control_tensor = random.choice(control_tensor_list)
|
|
# it is 0-1 need to convert to -1 to 1
|
|
control_tensor = control_tensor * 2 - 1
|
|
|
|
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype)
|
|
|
|
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
|
|
if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]:
|
|
control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bilinear')
|
|
|
|
# encode it
|
|
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype)
|
|
|
|
# inpainting always comes first
|
|
control_latent = torch.cat((inpainting_latent, control_latent), dim=1)
|
|
# concat it onto the latents
|
|
latents = torch.cat((latents, control_latent), dim=1)
|
|
return latents.detach() |