Files
ai-toolkit/testing/test_bucket_dataloader.py
2023-08-31 04:54:10 -06:00

71 lines
1.6 KiB
Python

import time
import numpy as np
import torch
from torchvision import transforms
import sys
import os
import cv2
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from toolkit.paths import SD_SCRIPTS_ROOT
from toolkit.image_utils import show_img
sys.path.append(SD_SCRIPTS_ROOT)
from library.model_util import load_vae
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets
from toolkit.config_modules import DatasetConfig
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('dataset_folder', type=str, default='input')
args = parser.parse_args()
dataset_folder = args.dataset_folder
resolution = 512
bucket_tolerance = 64
batch_size = 4
dataset_config = DatasetConfig(
dataset_path=dataset_folder,
resolution=resolution,
caption_ext='txt',
default_caption='default',
buckets=True,
bucket_tolerance=bucket_tolerance,
)
dataloader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size)
# run through an epoch ang check sizes
for batch in dataloader:
batch: 'DataLoaderBatchDTO'
img_batch = batch.tensor
# chunks = torch.chunk(img_batch, batch_size, dim=0)
# # put them so they are size by side
# big_img = torch.cat(chunks, dim=3)
# big_img = big_img.squeeze(0)
#
# min_val = big_img.min()
# max_val = big_img.max()
#
# big_img = (big_img / 2 + 0.5).clamp(0, 1)
#
# # convert to image
# img = transforms.ToPILImage()(big_img)
#
# show_img(img)
#
# time.sleep(1.0)
cv2.destroyAllWindows()
print('done')